Abstract:
A rotary current-collecting device includes a rotary slip ring and brushes coming into sliding contact with the outer peripheral surface of the slip ring. The brush-holding ring has an inner surface to which three brush-holding springs are fixed by screws. Each of the brushes is fixed to the tip end of the brush-holding spring and is pushed against the outer surface of the slip ring under the resilient restoration force of the brush-holding spring. When the slip ring revolves, the brushes come into sliding contact with the outer peripheral surface of the slip ring. The brush is made of a metal-graphite compound consisting of 70 weight percent copper and 30 weight percent graphite. The slip ring is entirely made of glassy carbon, so that the brush abrasion can be reduced.
Abstract:
An evacuated envelope is formed with a portion of larger diameter and tubular portions extending along the axis on both sides of the portion of larger diameter in opposite directions. A target with a rotatable anode is arranged in the portion of larger diameter. A pair of shafts arranged on the tube axis and fixed on both sides of this target are arranged in the tubular portions. Each shaft has at least one flange of insulating material on the side facing the target and on its periphery is provided with a metal tube constituting a rotor of a magnetic bearing. On the outermost side of the tubular portion there are arranged a magnetic field generating device and a magnetic drive device that rotates the rotatable anode target.
Abstract:
A bearing unit for rotary anodes of x-ray tubes includes a shaft and a flange element to which a rotary anode can be attached, wherein: the bearing unit can be inserted into a cutout within the x-ray tube and locked in place; the shaft is mounted via a first bearing element and a further bearing element; the first bearing element and the further bearing element each consists of an angular ball bearing mounted on the shaft and having an inner ring and an outer ring; and at least one spacer element is mounted between the inner rings and/or the outer rings of the first and the second bearing element.
Abstract:
A bearing unit for rotary anodes of x-ray tubes includes a shaft and a flange element to which a rotary anode can be attached, wherein: the bearing unit can be inserted into a cutout within the x-ray tube and locked in place; the shaft is mounted via a first bearing element and a further bearing element; the first bearing element and the further bearing element each consists of an angular ball bearing mounted on the shaft and having an inner ring and an outer ring; and at least one spacer element is mounted between the inner rings and/or the outer rings of the first and the second bearing element.
Abstract:
The rotating anode x-ray tube has a composite outer bearing made from two rings of a high hot-hardness material and a spacer between the two rings made of a constant coefficient of thermal expansion material. The spacer is welded to the two rings providing the composite outer bearing. One inner bearing race is formed from the shaft and the other inner bearing race is a one-piece inner race mounted on the shaft while the two rings have the corresponding outer races.
Abstract:
A low thermally conductive columbium metal stem has a heavy refractory metal x-ray target disk fastened to one end. A high thermal conductivity rotor hub comprising a cup-shaped element is fastened to the other end of the stem and the rotor hub is fastened to the end of an induction motor cylinder or liner which is coated to enhance heat emission and is induced to rotate by being coupled to a rotating magnetic field. A low thermally conductive bearing hub is fastened to the inside of the rotor hub and to a shaft which is journaled for rotation in bearings. The bearing hub enhances thermal isolation of the bearings from the hot rotor hub and hot target.