Abstract:
An image reading apparatus includes a CCD sensor which reads an image of an original document and converts the image into an electrical signal, in which an optical axis of light reflected by the original document is adjusted and allowed to project to the CCD sensor, the CCD sensor reads the image of the original document and converts the image into an electrical signal and to output the electrical signal. The image reading apparatus comprises a processing circuit which detects a CCD output value of the CCD sensor which is varied in accordance with a deviation of the optical axis, and an optical axis adjusting mechanism (first mirror and first carriages) which adjusts the optical axis such that an output value detected by the processing circuit becomes an appropriate value. The optical axis adjusting mechanism comprises a mirror which reflects light from the original document in a set direction, a fixing/supporting projection which supports the mirror at a given position, an optical axis adjusting screw which supports the mirror together with the fixing/supporting projection, and which turns the mirror by screwing or loosening the screw, thereby adjusting the optical axis, and an elastic supporting projection 29 which abuts from an opposite surface and elastically supports the mirror in a state in which adjustment by the optical axis adjusting screw is permitted.
Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.
Abstract:
An original reading unit has first and second arrays of sensor assemblies extending in a main scanning direction for performing readings of an original document. Each of the sensor assemblies includes a sensor holder that undergoes pivotal movement about a single rotation center as a fulcrum along a wall of a unit base to bring the sensor holder to a predetermined position whereat the sensor holder can be fixed to the units base wall. A line sensor is mounted relative to the sensor holder so as not to be shifted in the main scanning direction or in a sub-scanning direction, and to undergo movement in an approaching or a separating direction so as to be brought into contact with or separated from, respectively, the unit base wall and an original support plate attached to the unit base. A focus setup unit moves the line sensor in the approaching or separating direction and positions the line sensor at a location whereat focus can be adjusted.
Abstract:
An optical component structure includes an elongate optical component, a support member to which the optical component is fixed, and an adhesive for bonding the optical component to the support member. The optical component is provided with a contacting portion and a bonding portion different in position from the contacting portion. The contacting portion is brought into direct contact with the support member in a direction perpendicular to the longitudinal direction of the optical component. The adhesive is applied to the bonding portion, but not to the contacting portion. Examples of the optical component include a linear light source unit and a lens unit used in an image sensor module.
Abstract:
An image reading apparatus, including point light sources, arranged in a straight line state, configured to output light to light a document, and a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to receive the light incident on a surface of the light leading member, and to lead the received light so as to irradiate along a main scanning direction toward the document. The light leading member includes a positioning unit configured to make a gap between one of the point light sources arranged in a line state and the light leading member the same as a gap between another of the point light sources and the light leading member, and to make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
An improved structure of carriage module has a datum board with a very flat surface, a linear light-source, a pair of side boards and a light-transforming module. The datum board has a flat-rigid connecting surface formed with a plurality of screw holes therein. The linear light-source is fixed at a front edge of the datum board for providing light. The side boards are respectively disposed on two sides of the connecting surface and assembled with a plurality of reflecting mirrors therebetween for reflecting light. The light-transforming module is assembled on a middle portion of the connecting surface for receiving an image and transforming the image into an electric signal. The datum board has an axle sleeve mounted on one side thereof for the carriage module to slide thereon.
Abstract:
A scanning apparatus having an adjusting means is provided to allow the optical scanning module against the platen. The adjusting means is assembled with the carriage that carries the optical scanning module. The adjusting means at least comprises a roller and a rotated portion, wherein the roller tightly contacts the rotated portion. When the carriage is moving (during a scanning operation), the roller is rotating and friction (between the roller and the rotating assembly) causes the rotated portion to turn until contacting with the bottom surface of the optical scanning module, thereby allowing the optical scanning module against the platen.
Abstract:
The invention includes at least one mechanic adjusting device between the chassis of a scanner and the light base mounted with a light tube. The adjusting device is operated to adjust the position of the light tube to change the relative position with the document to be scanned. Thus, the purpose of adjusting the lightness accepted by the line to be scanned on the document to be scanned can be achieved.
Abstract:
An image scanning unit includes at least two lens groups for imaging a reflected image of a manuscript on a lined photoelectric conversion element (12), lens barrels (14, 15) for holding the lenses, respectively, and constituting an imaging lens system (16), a base member (10) on which the lined photoelectric conversion element (12) and the lens barrels (14, 15) are disposed, and intermediate holding members (13, 19) for mounting at least one of the lens barrels (14) and the lined photoelectric conversion element (12) on the base member (10).