Abstract:
A document reading apparatus includes a sensor configured to receive light from a document, an imaging lens configured to form an image of light from the document on the sensor, a first holding member to which the imaging lens is fixed, and a second holding member to which the sensor is fixed, wherein the first holding member and the second holding member are fixed using an adhesive and solder.
Abstract:
An image reading apparatus configured to read an image of an original, including: a light source configured to irradiate the original with light; an optical system configured to condense and image a light beam from the light source reflected from the original; a substrate member having a photoelectric conversion unit; a fixing member fixed to the substrate member; a support member configured to support the optical system; and an adhesive bonding the fixing member and the support member together, wherein one of the support member and the fixing member has a protruding portion which protrudes toward the other of the support member and the fixing member, the other has a recessed portion opposed to the protruding portion, the protruding portion protrudes in the recessed portion in a non-contact state to maintain a gap between the protruding portion and the recessed portion, and the adhesive is applied to the gap.
Abstract:
An image reading apparatus configured to read an image of an original, including: a light source configured to irradiate the original with light; an optical system configured to condense and image a light beam from the light source reflected from the original; a substrate member having a photoelectric conversion unit; a fixing member fixed to the substrate member; a support member configured to support the optical system; and an adhesive bonding the fixing member and the support member together, wherein one of the support member and the fixing member has a protruding portion which protrudes toward the other of the support member and the fixing member, the other has a recessed portion opposed to the protruding portion, the protruding portion protrudes in the recessed portion in a non-contact state to maintain a gap between the protruding portion and the recessed portion, and the adhesive is applied to the gap.
Abstract:
A contact image sensor is provided including a housing, a slit plate a lens, one or two light sources and a light-receiving element array mounted on a light-receiving element array substrate. The housing contains the slit plate, the lens, the one or two light sources and the light-receiving element array substrate. The optical system of the contact image sensor is aligned and one or more depressions are formed on an end of the substrate for the alignment. Power to the one or two light sources is applied through one or more leads. Each of the one or more depressions is large enough so that each of the leads can be passed through the respective depressions.
Abstract:
A joining construction is described for mounting the CCD cells of a color line camera on a color splitting prism (30) attached to a prism housing (2) for each CCD cell (6, 7, 8) attached by a first glue joint (13), to its fastening element (9), the length (L2) whereof is essentially larger than the length (L1) of the CCD cell, and which fastening element (9) extends from the housing margin (12a) located on one side of said exit surface (20a, 20b, 20c) of the color splitting prism to the other housing margin (12b) located on the opposite side thereof. Each fastening element (9) is attached to said margins by third glue joints (11).
Abstract:
An image reading apparatus includes an original illuminator; a reflector for reflecting light reflected by the original; a reading portion for reading the light reflected by the reflector; a holding member holding the reflection member; a first bonding portion connecting the holding member and one end portion of the reflector in a direction along a reflecting surface of the reflection member; and a second bonding portion connecting the holding member and the other end portion of the reflector in the direction along the reflecting surface of the reflection member. The second bonding portion has a hardness less than that of the first bonding portion.
Abstract:
An optical component structure includes an elongate optical component, a support member to which the optical component is fixed, and an adhesive for bonding the optical component to the support member. The optical component is provided with a contacting portion and a bonding portion different in position from the contacting portion. The contacting portion is brought into direct contact with the support member in a direction perpendicular to the longitudinal direction of the optical component. The adhesive is applied to the bonding portion, but not to the contacting portion. Examples of the optical component include a linear light source unit and a lens unit used in an image sensor module.
Abstract:
An optical scanning apparatus constructed to dispose optical elements guiding light beams to a deflector such as a rotary polygon mirror at a low cost with high accuracy, includes a first light source, a second light source, a deflector, a first optical member provided on a first optical path between the first light source and the deflector, a second optical member provided on a second optical path between the second light source and the deflector, and one wall holding both of a side surface of the first optical member and a side surface of the second optical member.
Abstract:
An image scanning unit includes at least two lens groups for imaging a reflected image of a manuscript on a lined photoelectric conversion element (12), lens barrels (14, 15) for holding the lenses, respectively, and constituting an imaging lens system (16), a base member (10) on which the lined photoelectric conversion element (12) and the lens barrels (14, 15) are disposed, and intermediate holding members (13, 19) for mounting at least one of the lens barrels (14) and the lined photoelectric conversion element (12) on the base member (10).
Abstract:
Semiconductor chips, such as photosensor arrays in a full-width scanner, are mounted on printed wiring boards. The printed wiring boards are in turn mounted on a second layer of printed wiring board material. The two layers of printed wiring board material are attached so that the seams between adjacent printed wiring boards in each layer alternate in a brick-like fashion. This structure enables arrays of semiconductor chips to be constructed in relatively long lengths, with minimal risk of damage caused by thermal stresses.