摘要:
The present invention relates to a recombinant process for the production of truncated or mutated dextransucrases while conserving the enzymatic activity or their specificity in the synthesis of the α-1,6 bonds. The present invention relates to nucleic acid sequences of truncated or mutated dextransucrases, vectors containing the nucleic acid sequences and host cells transformed by sequences encoding truncated or mutated dextransucrases. In another aspect, the invention concerns a method for producing, in a recombinant manner, truncated or mutated dextransucrases which conserve their enzymatic activity or which conserve their specificity in the synthesis of α-1,6 bonds and can produce, from saccharose, dextrans with high molar mass and modified rheological properties compared with the properties of dextran obtained with the native enzyme and isomalto-oligosaccharides with a controlled molar mass and dextrans. The dextrans and isomalto-oligosaccharides of the invention can be used namely as texturing agents or as prebiotics.
摘要:
Novel dried compositions containing polysaccharides (dextrans and levans) derived using a Leuconostoc to ferment sucrose to produce the polysaccharides are described. In particular, dried compositions incorporating milk solids or other drying aids to facilitate drying and rehydration of the polysaccharides are described. The compositions are useful as quality (e.g. texture, stability or thickness) improvers for foods.
摘要:
Iso-malto-oligosaccharide monovalent haptens were prepared by adding an aqueous sucrose solution to an aqueous solution of D-glucose containing more than 300 mmol glucose per 1000 U .alpha.(1.fwdarw.6)-D-glucosyl transferase at 265 to 310 K and a pH value of from 4.5 to 8.0 and a molar ratio of sucrose to glucose of from 0.5 to 2.0. After consumption of the sucrose, glucose, liberated fructose and undesired oligosaccharides are separated in a known manner.The process of the invention allows a particularly economical preparation of the monovalent haptens which serve for the prophylaxis of undesired dextran induced anaphylactoid side effects (DIAR).
摘要:
A gluco-oligosaccharide mixture having up to 30, in particular from 10 to 20, anhydroglucose units is prepared by reacting an aqueous solution of a mono-or disaccharide composed of glucose units containing more than 200 mmol of the saccharide per 1000 U .alpha.(1.fwdarw.6)-D-glucosyl transferase, at 265 to 310 K and a pH value of from 4.5 to 8.0, with an aqueous solution of sucrose in a molar ratio of sucrose to glucose of 2.0 to 5.0.The oligosaccharide mixtures of the present invention are used as calorie-free carrier for sweetening agents and as "body building" sweetening agent.
摘要:
Compositions are disclosed herein comprising a graft copolymer having (i) a backbone comprising dextran with a molecular weight of at least about 100000 Daltons, and poly alpha-1,3-glucan side chains comprising at least about 95% alpha-1,3-glucosidic linkages. Further disclosed are reactions for producing such graft copolymers, as well as their use in absorbent materials.
摘要:
Compositions are disclosed herein comprising a graft copolymer that comprises: (i) a backbone comprising dextran that has been modified with about 1%-25% alpha-1,2 branches, and (ii) one or more alpha-1,3-glucan side chains comprising at least about 50% alpha-1,3 glycosidic linkages. Further disclosed are reactions for producing such graft copolymers, as well as their use in derivatives, films and various other applications.
摘要:
Fibrids comprising poly alpha-1,3-glucan or surface-modified poly alpha-1,3-glucan were produced and characterized. Applications and products for using these fibrids include emulsification, viscosity modification, paper and paper making, personal care products, pharmaceutical products, food products, paper coatings, and composites. Examples of surface-modified poly alpha-1,3-glucan fibrids include those with a positive surface charge.
摘要:
Reaction compositions are disclosed herein comprising at least water, beta-glucose -1-phosphate (beta-G1P), an acceptor molecule, and an alpha-1,3-glucan phosphorylase enzyme. These reactions can synthesize oligosaccharides and polysaccharides with alpha-1,3 glycosidic linkages. Further disclosed are alpha-1,3-glucan phosphorylase enzymes and methods of use thereof.