摘要:
A method for heating primary coolant in a nuclear supply system in one embodiment includes filling a primary coolant loop within a reactor vessel and a steam generating vessel that are fluidly coupled together with a primary coolant, drawing a portion of the primary coolant from the primary coolant loop and into a start-up sub-system, heating the portion of the primary coolant to form a heated portion of the primary coolant, and injecting the heated portion of the primary coolant back into the primary coolant loop. The primary coolant may be heated to a no-load operating temperature.
摘要:
An exemplary embodiment can include an apparatus including: an internal-external hybrid nuclear reactor, which can include: at least one reciprocating internal engine; and at least one external reactor integrated with said at least one reciprocating internal engine. The reciprocating engine can receive nanofuel (including moderator, nanoscale molecular dimensions & molecular mixture) internally in an internal combustion engine that releases nuclear energy. A method of operating the hybrid nuclear reactor can include operating the reciprocating internal engine loaded with nanofuel in spark or compression ignition mode. A method of cycling the reciprocating internal engine, can include compressing nanofuel; igniting nanofuel; capturing energy released in nanofuel, which is also the working fluid; and using the working fluid to perform mechanical work or generate heat.
摘要:
A nuclear reactor system that, in one embodiment, utilizes natural circulation to circulate a primary coolant in a single-phase through a reactor core and a heat exchange sub-system. The heat exchange subsystem is located outside of the nuclear reactor pressure vessels and, in some embodiments, is designed so as to not cause any substantial pressure drop in the flow of the primary coolant within the heat exchange sub-system that is used to vaporize a secondary coolant. In another embodiment, a nuclear reactor system is disclosed in which the reactor core is located below ground and all penetrations into the reactor pressure vessel are located above ground.
摘要:
The invention relates to SiC ceramic matrix composite (CMC) claddings with metallic, ceramic and/or multilayer coatings applied on the outer surface for improved corrosion resistance and hermeticity protection. The coating includes one or more materials selected from FeCrAl, Y, Zr and Al—Cr alloys, Cr2O3, ZrO2 and other oxides, chromium carbides, CrN, Zr- and Y-silicates and silicides. The coatings are applied employing a variety of known surface treatment technologies including cold spray, thermal spray process, physical vapor deposition process (PVD), and slurry coating.
摘要:
Nuclear reactors have very few systems for significantly reduced failure possibilities. Nuclear reactors may be boiling water reactors with natural circulation-enabling heights and smaller, flexible energy outputs in the 0-350 megawatt-electric range. Reactors are fully surrounded by an impermeable, high-pressure containment. No coolant pools, heat sinks, active pumps, or other emergency fluid sources may be present inside containment; emergency cooling, like isolation condenser systems, are outside containment. Isolation valves integral with the reactor pressure vessel provide working and emergency fluid through containment to the reactor. Isolation valves are one-piece, welded, or otherwise integral with reactors and fluid conduits having ASME-compliance to eliminate risk of shear failure. Containment may be completely underground and seismically insulated to minimize footprint and above-ground target area.
摘要:
A coating of niobium oxide, zirconium titanate, or nickel titanate is formed on at least a part of a surface of a jet pump member constituting a jet pump serving as a reactor internal structure of a boiling water reactor. Further, a solution containing, e.g., a niobium compound is applied to at least a part of the surface of the jet pump member constituting the jet pump, and the jet pump member coated with the solution is heat-treated to form a coating of, e.g., niobium oxide. With this configuration, the jet pump member constituting the jet pump of the boiling water reactor is provided such that deposition of crud can be sufficiently suppressed on the jet pump member.
摘要:
An in-core instrumentation system for a reactor module includes a plurality of in-core instruments connected to a containment vessel and a reactor pressure vessel at least partially located within the containment vessel. A reactor core is housed within a lower head that is removably attached to the reactor pressure vessel, and lower ends of the in-core instruments are located within the reactor core. The in-core instruments are configured such that the lower ends are concurrently removed from the reactor core as a result of removing the lower head from the reactor pressure vessel.
摘要:
The present invention provides a top nozzle for use with PWR nuclear reactors and power plants, and in particular, VVER nuclear reactors. The top nozzle includes a plate portion having a peripheral portion; a hub portion spaced from the plate portion; a plurality of support portions extending from the plate portion to the hub portion; and at least one deflector portion extending inwardly from the peripheral portion at an acute angle with respect to the plate portion.
摘要:
A nuclear fuel assembly having varying spacing between fuel rods is provided. The nuclear fuel assembly includes a bundle of fuel rods. The fuel rods are arranged in a first lattice with a non-uniform pitch between the fuel rods in the lowermost section of the fuel assembly and in a second lattice with a uniform pitch between the fuel rods in the uppermost section of the fuel assembly.
摘要:
The invention is an innovative design/repair methodology for PWR piping nozzles and vessel nozzles that are attached to the piping/vessel base material with a full penetration weld joint geometry. The development of a robust repair methodology for nozzles of this configuration is necessary due to plant aging, potential material degradation in the original materials of construction, potential increased nondestructive examination requirements, and PWSCC phenomena in the susceptible original materials of construction. The purpose/objective of the repair methodology is to provide a means of partially replacing the existing pressure boundary susceptible materials with PWSCC-resistant materials to facilitate the long-term repair life of the plant. The invention may be applied to a plurality of nozzle, piping, and vessel sizes with a full penetration weld joint.