Abstract:
An optical homodyne detection system employs the phenomenon of stimulated Brillouin scattering to amplify the carrier component of an incoming coherent modulated optical wave. The composite wave formed of the amplified carrier component and unamplified information component is locked in phase, frequency and polarization with the incoming modulated wave. Using this composite wave, a homodyne detection system is formed to detect the data in the information component.
Abstract:
A non-circularly-symmetric intensity distribution is formed on a quadrant photodetector by coherently mixing two optical signals propagating in selected modes of different order. These modes are chosen either such that a change in relative phase of the two signals produces solely a rotation of the orientation of that intensity distribution, or such that a change in relative states of polarization produces this rotation.
Abstract:
A receiver for modulated optical signals including a multiport optical fibre coupler arrangement (10) to one input port of which the modulated optical signals are applied and to another input port of which a local oscillator optical signal of substantially the same optical frequency as the modulated optical signal is applied whereby the output ports of the coupler give separate output signals that are differentially related to the optical frequency phase difference between the modulated input signal and the local oscillator signal, means for individually demodulating (12a-12c) the output signals and means for summing the demodulated output signals.
Abstract:
The present invention relates to coherent optical heterodyning receivers which mix a received optical signal, including an arbitrary polarization state, and a local oscillator signal, including a fixed polarization state, while providing a performance which is independent of the polarization direction of a received signal. In one receiver version, the received signal is heterodyned using only a portion of the local oscillator signal, while in a second receiver version, the entire local oscillator signal is used. The combined polarized signals are split in a polarizing beam splitter between the two orthogonal polarization axes for propagation in separate branches. Each branch includes a photodetector and means for processing the resulting photodetector output signal to retrieve the modulation information from the processed signal. The sum of the two demodulated signals from the two branches provides a baseband signal independent of the polarization state of the received optical signal.
Abstract:
The present invention relates to a single-photodiode optical mixer for heterodyne detection of optical signals. In the present optical mixer, a received optical signal and an optical local oscillator signal, which are each polarized along one direction of a polarizing beam-splitter, are directed at a 3 dB beam-splitter. Equal portions of the received signal and local oscillator signal are directed along first and second paths by the beam-splitter for arrival at a polarizing beam-splitter. One of the paths between the two beam-splitters comprises a 90 degree polarization rotator for rotating the polarization of the signal passing therethrough by .pi./2 radians. The output from the polarizing beam-splitter comprises the signal from the first path including a first polarization direction and the signal from the second path including a second polarization direction, which two signals are detected independently by a single photodetector to generate an IF signal which is the sum of the two IF currents.
Abstract:
An improved homodyne receiver for use in wideband optical communications systems is disclosed. The receiver utilizes quadrature demodulation of the optical signal in the manner of a two-phase receiver. A beam-splitting/phase-splitting optical assembly is used to channelize the received and the local oscillator beams to a pair of optical detectors. Squaring amplifiers in the quadrature channels followed by a summing network provide an output signal which is proportional to the square of the modulation of the input signal. This receiver is especially well-suited to the reception of Pulse Code Modulated optical signals.
Abstract:
In the optical heterodyne receivers disclosed, the overall signal-to-noise ratio is improved by widening in terms of time duration the information-modulated optical pulses so that their bandwidth is comparable to the bandwidth of the detector. In particular, multiple reflection widening techniques are disclosed. Balanced detection with pulse widening in each path is also disclosed.
Abstract:
In a synchronous circuit, a synchronizing signal generator combines either an optical BPSK signal or local oscillation light with a phase-shifted signal to produce different optical signals, one of which for use in producing a signal demodulated from the BPSK signal is square-law detected, and calculates the optical signal detected to convert the signal into an electric signal. The generator produces an electric phase-locking signal which will be a demodulated signal from the BPSK signal on the basis of the electric signal. The phase-locking signal is used as a modulating signal by an intensity-modulating circuit to modulate an incident continuous light into an optical intensity-modulated signal, which is optoelectrically converted and square-law detected by an optoelectric converter. The converted signal is used by an optical VCO circuit as a phase error signal to adjust the phase or frequency of the local oscillation light, which is supplied to the signal generator.