Abstract:
The present invention provides for cooling the squealer tip region of a high pressure turbine blade used in a gas turbine engine comprising coating the squealer tip with a metallic bond coat. Micro grooves oriented in the radial direction are fabricated into the airfoil on the interior surface of the squealer tip above and substantially perpendicular to the tip cap. A micro groove oriented in the axial direction is fabricated along the joint corner between the squealer tip side wall and the, tip cap to connect and act as a plenum with all of the micro grooves oriented in the radial direction. Tip cap cooling holes are drilled through the tip cap and connected to the micro groove that ultimately forms a plenum. TBC ceramic is then deposited on both blade external surfaces and the tip cavity, forming micro channels from micro grooves as a result of self shadowing. In this manner, cooling fluid passes from a cooling fluid source through the tip cap holes and into the plenum created by the micro channel, subsequently passing into the micro channels that are oriented in the radial direction. Cooling fluid is thereby directed through the micro channels to cool the squealer, exiting in the vicinity of the tip. Since the TBC is porous, some of the cooling fluid will also flow through the TBC to provide transpiration cooling. The present invention further comprises both the cooled blade and squealer tip region formed by the foregoing methods and the blade and squealer tip with the micro channels for cooling the squealer tip.
Abstract:
An electrode having a dielectric coating is patterned to provide axially spaced rows of insulating material on the external surface of the electrode with one or more gaps in the insulating material of each row. The electrode is placed in a preformed hole of a turbine bucket and an electrolyte is provided for flow between the electrode and the walls of the hole. Upon application of an electrical current, portions of the material of the interior wall surface directly opposite the non-insulated portions of the electrode are dissolved, forming grooves. The insulated portions of the electrode leave axially spaced rows of projections extending toward the axis of the hole. The gaps in the rows or projections are axially misaligned. The projections form turbulators in the cooling flow passages of the bucket, enhancing the heat transfer coefficient.
Abstract:
A method of repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method more particularly involves repairing a thermal barrier coating on a component that has suffered localized spallation of the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a ceramic paste comprising a ceramic powder in a binder is applied to the surface area of the component. The binder is then reacted to yield a ceramic-containing repair coating that covers the surface area of the component and comprises the ceramic powder in a matrix of a material formed when the binder was reacted. The binder is preferably a ceramic precursor material that can be converted immediately to a ceramic or allowed to thermally decompose over time to form a ceramic, such that the repair coating has a ceramic matrix. The repair method can be performed while the component remains installed, e.g., in a gas turbine engine. Immediately after the reaction step, the gas turbine engine can resume operation during which the binder is further reacted/converted and the strength of the repair coating increases.
Abstract:
A turbine blade includes an integral airfoil, platform, shank, and dovetail, with a pair of holes in tandem extending through the platform and shank in series flow communication with an airflow channel inside the shank. Cooling air discharged through the tandem holes effects multiple, convection, impingement, and film cooling using the same air.
Abstract:
A method for modifying cooling holes in a gas turbine engine film-cooled component by machining cooling hole outlets to enlarge the outlets and remove any portion of the cooling hole walls which might exhibit cracks.
Abstract:
A turbine airfoil includes a plurality of internal ribs defining at least two independent serpentine cooling circuits having outer and inner serpentine portions, respectively, in different longitudinal tiers with the outer serpentine position being disposed longitudinally above the inner tier serpentine position for differentially longitudinally cooling the airfoil. The outer and inner serpentine portions include outer and inner exits and entrances wherein the outer and inner exits are positioned aft of the outer and inner entrances, respectively, so as to have a chordal flow direction aftwards from the leading edge to the trailing edge within the serpentine portions.
Abstract:
A turbine blade includes a hollow airfoil extending from an integral dovetail. The airfoil includes sidewalls extending between leading and trailing edges and longitudinally between a root and a tip. The sidewalls are spaced apart to define a flow channel for channeling cooling air through the airfoil. The tip is tapered longitudinally above at least one of the sidewalls and decreases in thickness.
Abstract:
A gas turbine engine rotor blade includes an airfoil having a concave side wall and a convex side wall joined together at leading and trailing edges. Concave and convex tip walls extend from adjacent the leading edge along the respective concave and convex side walls to adjacent the trailing edge and are spaced apart to define a tip cavity therebetween. A hole or channel is disposed in a trailing edge tip region connecting the tip cavity to the trailing edge for channeling cooling fluid through the trailing edge tip region.
Abstract:
A turbine blade includes a dovetail, shank, platform, and airfoil. A cooling circuit extends radially therethrough for circulating a coolant. A thermal conductor is disposed on a lower surface of the platform for conducting heat from the platform to the shank for removal by the coolant in the cooling circuit.
Abstract:
A turbine blade includes an airfoil having an internal cooling circuit therein. The airfoil extends from a root to a tip cap, and includes laterally opposite pressure and suction sides extending between a leading edge and an opposite trailing edge over which is flowable a combustion gas. A pair of squealer tips extend radially upwardly from the tip cap along the pressure and suction sides, and are spaced apart between the leading and trailing edges to define an upwardly open tip cavity. At least one of the squealer tips includes a slot extending radially inwardly to the tip cap, with the slot also extending along the squealer tip between the leading and trailing edges. A plurality of spaced apart supply holes extend radially through the tip cap in the slot in flow communication with the cooling circuit for channeling the coolant into the slot for cooling the squealer tip. A thermal barrier coating may then be disposed on an outboard side of the squealer tip for providing insulation against the combustion gas flowable therealong.