Abstract:
A method and an apparatus for playing broadcast content in a broadcasting system are provided. The method and the apparatus enable a viewer to watch an entire event by broadcasting the event through different networks in a condition that the event may not be broadcast from start to finish over a single broadcasting network.
Abstract:
A latency control circuit includes a clock delay configured to output a plurality of serial delay signals obtained by serially delaying an input clock signal with the same intervals, a deviation information generating unit configured to generate a deviation information on the basis of a delay value, which the clock signal undergoes in a chip, and latency information, a clock selector configured to output a plurality of clock selection signals based on the plurality of serial delay signals and the deviation information, a command signal processing unit configured to generate a read signal based on an input command signal, and output a variable delay duplication signal by variably delaying the read signal, and a latency shifter configured to output a latency signal by combining the plurality of clock selection signals with the variable delay duplication signal.
Abstract:
An end device may include a camera configured to capture an image of an object, a touch screen configured to receive a touch input and a processor configured to determine to unlock the end device based, at least in part, on the image of the object and the touch input.
Abstract:
Provided is a breakaway-prevent trolley system for a flexible retractable structure, including a plate that supports a cable, and a trolley that is movable on the cable and folds or unfolds a flexible film. The trolley includes: a slider movable along the cable; a flexible film coupling member provided under the slider and coupled to the flexible film; an elastic module (E) provided inside the slider. The elastic module includes: an elastic block including a spring therein and moving under an elastic force of the spring by a predetermined distance in a vertical direction; and an upper support plate that supports the elastic block from above, a side support-plate that supports the elastic block from a side, and a lower support plate that supports the elastic block from below, and a lower surface of the elastic block vertically movable while in contact with an upper surface of the plate.
Abstract:
A preconditioned conjugate gradient (PCG) solver, embedded in an electronic device to perform a simultaneous localization and mapping (SLAM) operation, includes an image database, a factor graph database, and a back-end processor, wherein the back-end processor is configured to receive an image from the image database to perform re-localization, receive, from the factor graph database, data for calculating six degrees of freedom (DoF)-related components, construct a matrix including the six degrees of freedom-related components based on the received data, and load and rearrange the matrix and a vector, to perform calculation on each block of each row of the matrix and the vector, then output first data, and shift second data to a location of the first data.
Abstract:
A method of adaptively training an equalizer system of a PAM-N receiver is disclosed. The method of training an equalizer system according to the present invention employs a training pattern including a first training data pattern and second training data pattern to tune the continuous-time linear equalizer, decision feedback equalizer and sampler constituting the equalizer system before use in actual communication enabling long-distance, high-speed communication.
Abstract:
A PAM-N receiver capable of adaptively adjusting threshold voltages determining a level of a received signal and a method of adaptively adjusting threshold voltages thereof are disclosed. According to the method of the present invention, the result of comparison between reference data levels and the level of data in the received signal are used to adjust the reference data levels, and the threshold voltages of a PAM-N receiver are adaptively calculated from the adjusted reference data levels, thereby reflecting transmission line conditions and Inter-Symbol Interference.
Abstract:
The present invention relates to a method for preparing a fully ceramic capsulated nuclear fuel material containing three-layer-structured isotropic nuclear fuel particles coated with a ceramic having a composition which has a higher shrinkage than a matrix in order to prevent cracking of ceramic nuclear fuel, wherein the three-layer-structured nuclear fuel particles before coating is included in the range of between 5 and 40 fractions by volume based on after sintering. More specifically, the present invention provides a composition for preparing a fully ceramic capsulated nuclear fuel containing three-layer-structured isotropic particles coated with the substance which includes, as a main ingredient, a silicon carbine derived from a precursor of the silicon carbide wherein a condition of ΔLc>ΔLm at normal pressure sintering is created, where the sintering shrinkage of the coating layer of the three-layer-structured isotropic nuclear fuel particles is ΔLc and the sintering shrinkage of the silicon carbide matrix is ΔLm; material produced therefrom; and a method for manufacturing the material. The residual porosity of the fully ceramic capsulated nuclear fuel material is 4% or less.
Abstract:
A surface of a copper (Cu) electrode is modified by a combination of preliminary oxidation treatment and grafting of a bifunctional self-assembled monolayer based on fluorobiphenylthiol (FBPS) or biphenylthiol (BPS). Under these conditions, a dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT)-based diode exhibits high mobility (0.35 cm2·V−1·s−1) due to the formation of an organized assembly of FBPS on copper oxide that has been partially reduced to Cu2O. This organization controls that of a semiconductor film. On the other hand, the same treatment of a copper electrode with BPS molecules does not function due to the disorganization of both the BPS self-assembled monolayer (SAM) and the DNTT film. These results suggest that a monolayer of dipole-oriented molecules lowers an injection barrier and determines the semiconductor organization, thereby improving the performance of derived electronic parts.
Abstract:
A triboelectric nanogenerator (TENG) using a 3D-spacer fabric and polydimethylsiloxane (PDMS) shows great application potential for biokinetic energy harvesting and a multifunctional self-power device. In the present disclosure, a TENG with a fabric-PDMS-fabric structure is fabricated using diverse three-dimensional (3D) fabrics and PDMS. Peak-to-peak output voltages of the diverse 3D-spacer fabrics are compared. The output voltages are changed due to structures and vertical fibers. In addition, a coefficient of surface friction between PDMS and fabric improves the output voltage. TENGs using different 3D-spacer polymeric fabrics show different maximum peak-to-peak output voltage performances. This is due to the stiffness, lateral elasticity, and 3D morphology of the fabrics. It is considered that those factors including the stiffness, the lateral elasticity, and the 3D morphology influence the densities in vertical and lateral fiber-to-fiber interaction.