Abstract:
A turbine engine component includes an internal baffle spaced between first and second walls. Each wall may have a plurality of cooling holes in fluid communication with respective upstream and downstream cooling paths defined between the baffle and the respective walls. Cooling air first flows through an upstream end portion of the upstream cooling path, then through a downstream end portion where the air enters a bleed aperture in the baffle. From the bleed aperture, a portion of or all of the cooling air may enter an internal cavity defined by the baffle and, from there, flows through at least one hole that may be a plurality of impingement holes in the baffle, and into the downstream cooling passage where the portion or all of the remaining cooling air may exit the component through the cooling holes in the second wall.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, an airfoil that extends between a leading edge, a trailing edge, a pressure side wall and a suction side wall. A cooling circuit is disposed inside of the airfoil. The cooling circuit includes a first core cavity that radially extends inside of the airfoil. A first axial skin core is in fluid communication with the first core cavity at a first location of the first axial skin core and a second core cavity is in fluid communication with the first axial skin core at a second location of the first axial skin core.
Abstract:
A method of forming a metal single crystal turbine component with internal passageways includes forming a polycrystalline turbine blade with internal passageways by additive manufacturing and filling the passageways with a core ceramic slurry. The ceramic slurry is then treated to harden the core and the turbine component is encased in a ceramic shell which is treated to form a ceramic mold. The turbine component in the mold is then melted and directionally solidified in the form of a single crystal. The outer shell and inner ceramic core are then removed to form a finished single crystal turbine component with internal passageways.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, an airfoil that extends between a leading edge, a trailing edge, a pressure side wall and a suction side wall. A cooling circuit is disposed inside of the airfoil. The cooling circuit includes a first core cavity that radially extends inside of the airfoil. A first axial skin core is in fluid communication with the first core cavity at a first location of the first axial skin core and a second core cavity is in fluid communication with the first axial skin core at a second location of the first axial skin core.