Abstract:
A uni-directional waste ink removal system cleans ink residue from an electrostatic sensing element of an ink drop detector in a printing mechanism when the electrostatic sensing element, supported by a base, is actuated between an activated position, a storage position, and back to the activated position. The system also includes a scraper and an absorber which first contact the sensing element when the base is in the storage position, thereby ensuring ink residue may be absorbed, and that ink residue is only scraped from the sensing element in one direction as the base is moved to the activated position. A method of cleaning ink residue from an electrostatic sensing element of an ink drop detector, and a printing mechanism having such a unidirectional waste ink removal system are also provided.
Abstract:
A printer control apparatus and an algorithm for determining the peak instantaneous speed of a substrate through a thermal ink jet printer and a printer apparatus are disclosed herein. The printer includes a dryer module, a print head module, and a controller. The method includes determining the tolerable peak instantaneous speeds of the substrate through the print head and dryer modules, which by their sequential nature, operate out of phase from one another. The lower of the two speeds is then selected as the optimum instantaneous speed of the substrate through the printer. A controller in the printer carries out methods disclosed herein.
Abstract:
An ink jet printing method comprising the steps of: a) providing an ink jet printer that is responsive to digital data signals; b) loading the printer with an ink jet recording element comprising a substrate having thereon an image-receiving layer comprising an inorganic, anionic pigment, an organic, anionic binder and an organic, cationic mordant, and a porous overcoat layer located over the image-receiving layer, the porous overcoat layer comprising an inorganic pigment and an organic, anionic, binder, wherein the refractive index of the inorganic pigment in the overcoat layer is at least 0.05 refractive index units less than the refractive index of the inorganic, anionic pigment in the image-receiving layer; c) loading the printer with an ink jet ink composition; and d) printing on the recording element using the ink jet ink in response to the digital data signals.
Abstract:
A powder composition containing a powder of a modified polymer having a recurring unit containing at least one carboxyl group, the carboxyl groups of part of the recurring units being in the form of a salt with an aliphatic amine having at least 6 carbon atoms, and a powder of a surfactant. The powder composition is used for forming an image on a printing medium, in which method the composition is applied over a surface of a transfer medium to form a layer of the powder. An image of a liquid ink capable of dissolving or swelling the powder is then formed on the layer so that the viscosity of the liquid ink increases when contacted with the powder. The image on the transfer medium is contacted with the printing medium so that the image is transferred to the printing medium.
Abstract:
When a print nozzle or other firing element of an ink jet print head fails, printed image quality suffers. In a print head where there are additional printing elements that continue to work and that are adjacent the failed element, a failed firing element can be compensated for by increasing the firing rate of, or firing pulse duration to, one or more printing elements that are adjacent to the failed element. Additional ink deposited on the printing medium will bleed onto areas that are normally printed onto by the failed firing element.
Abstract:
An apparatus for determining the time at which a charged droplet is at a predetermined physical position comprising: first and second electrodes (1, 3) past which said droplet passes in use of said apparatus, said droplet inducing a charge on each said electrode (1, 3) as it passes; and circuitry (5, 7, 9) responsive to the charges induced on the first and second electrodes (1, 3) for determining the time at which said droplet is at said predetermined physical position midway between said electrodes (1, 3). An apparatus for measuring the velocity of a charged ink droplet generated by an ink jet printing system comprising: first and second spaced pairs of electrodes (23, 25, 27, 29) past which said droplet passes in use of said apparatus, said droplet inducing a charge on each said electrode (23, 25, 27, 29) of the pairs as it passes, and circuitry (35, 41, 43) responsive to the charges induced on the electrodes (23, 25, 27, 29) for determining the time at which said droplet is midway between the first pair of electrodes (23, 25) and the time at which the droplet is midway between the second pair of electrodes (27, 29), the velocity measurement being provided by dividing the distance between these two midway points by the time between the times at which the droplet is at these two midway points.
Abstract:
An inkjet printing method of fixing ink to a print medium is disclosed. An embodiment of the method comprises depositing ink drops on a print medium with an inkjet printhead, the ink including a solvent and the print medium including a first surface. The method additionally comprises vibrating the print medium by applying ultrasonic energy to displace drops of the solvent to the first surface of the print medium to accelerate evaporation of the drops of solvent. An apparatus for use in an inkjet printing device is also disclosed. An embodiment of the apparatus comprises an ultrasonic source configured to apply ultrasonic energy to a print medium to displace drops of ink solvent to a first surface of the print medium thereby accelerating evaporation of the drops of solvent. An inkjet printing device including the method and apparatus is also disclosed. Further characteristics and features of the method and apparatus are described herein, as are examples of various alternative embodiments.
Abstract:
An apparatus and method for ink-jet printing on a recording medium is provided which includes the steps of jetting aqueous ink drops on paper in the form of an image. The aqueous ink used is a slow-drying (high-surface tension) ink which does not penetrate the paper/paper fibers for a relatively long time. Prior to penetration of the paper/paper fibers, the water in the droplet is quickly evaporated from the ink while still resident on the paper surface. The evaporation process is substantially completed prior to an additional liquid ink being jetted onto the same or adjoining location of the recording medium. The evaporation is rapid enough to prevent the resident ink from substantially migrating/wicking to any adjacent location or into the recording medium. Further the drying energy is transferred to the resident ink spots from the same direction as the printheads ensuring less energy requirement.
Abstract:
A microwave ink drying apparatus for an ink jet printer includes a microwave applicator. The applicator may be attached to a movable print carriage. The applicator may further comprise a slot antenna. The slot antenna may be formed as a dual slot, with one portion of the slot coupled to a wave launching cavity, and the other portion of the slot coupled to an impedance matching cavity.
Abstract:
An ink jet printing medium for an embossed interior decorating member comprises a base member having a face, a thermoplastic resin layer deposited on the face of the base member, and a non-aqueous and porous ink receiving layer, deposited on the thermoplastic resin layer, for receiving liquid pigment ink. The thermoplastic resin layer is made of a material comprising a thermoplastic resin and a heating foaming agent dispersed in the thermoplastic resin. In an aspect, the thermoplastic resin layer has not yet been foamed. In another aspect, the thermoplastic resin layer has already been foamed. In still another aspect, the thermoplastic resin layer has already been foamed and embossed.