摘要:
The antifuse structure of the present invention includes a bottom planarized electrode, an ILD disposed over the bottom electrode, an antifuse cell opening in and through the ILD exposing the bottom electrode, a first barrier metal layer disposed in the antifuse cell opening to protect the antifuse material layer from diffusion from the bottom electrode and to form an effective bottom electrode of reduced area, hence reducing the capacitance of the device, an antifuse material layer disposed in the antifuse cell opening and over the first barrier metal layer, a second barrier metal layer disposed over the antifuse material layer, and a top electrode disposed over the second barrier metal layer.
摘要:
A method and apparatus for forming a buried insulator layer, typically a silicon dioxide layer, includes using plasma source ion implantation to uniformly implant ions into exposed regions of a semiconductor wafer. A silicon-on-insulator (SOI) structure is formed by an anneal step before fabricating an integrated circuit into the thin semiconductor layer above the buried insulator layer.
摘要:
The antifuse structure of the present invention includes a bottom planarized electrode, an ILD disposed over the bottom electrode, an antifuse cell opening in and through the ILD exposing the bottom electrode, a first barrier metal layer disposed in the antifuse cell opening to protect the antifuse material layer from diffusion from the bottom electrode and to form an effective bottom electrode of reduced area, hence reducing the capacitance of the device, an antifuse material layer disposed in the antifuse cell opening and over the first barrier metal layer, a second barrier metal layer disposed over the antifuse material layer, and a top electrode disposed over the second barrier metal layer.
摘要:
An X-ray lithography apparatus permits the successive exposure of each of four quadrants of a semiconductor wafer through a single mask. The mask overlays one quadrant of the wafer at a time and the wafer is rotated through 90 degrees after exposure of a quadrant to allow exposure of succeeding wafer quadrants; each wafer quadrant is independently aligned to the mask prior to exposure. In an alternative preferred embodiment, a rotatable diaphragm is used to select a single mask quadrant from a mask which overlays the entire surface of the semiconductor wafer. Both the wafer and the diaphragm may be rotated to allow various exposure combinations of mask and wafer quadrants.
摘要:
An improved MESFET integrated circuit device with a metal-semiconductor diode as the control element and a source and drain as other device elements is fabricated using a self-aligned gate process which consists of an implanted channel stopper underneath a thick field oxide, depletion and enhancement mode device channel implants, implanted source and drain regions, selective oxidation to form self-aligned gates, metal-semiconductor junctions as control elements, barrier metal and a thin film metallization system. The process and device structure are suited for high packing density, very low speed power product and ease of fabrication making it attractive for digital applications.
摘要:
An improved MESFET integrated circuit device with a metal-semiconductor diode as the control element and a source and drain as other device elements is fabricated using a self-aligned gate process which consists of an implanted channel stopper underneath a thick field oxide, depletion and enhancement mode device channel implants, implanted source and drain regions, selective oxidation to form self-aligned gates, metal-semiconductor junctions as control elements, barrier metal and a thin film metallization system. The process and device structure are suited for high packing density, very low speed power product and ease of fabrication making it attractive for digital applications.
摘要:
An apparatus and method for ink-jet printing on a recording medium is provided which includes the steps of jetting aqueous ink drops on paper in the form of an image. The aqueous ink used is a slow-drying (high-surface tension) ink which does not penetrate the paper/paper fibers for a relatively long time. Prior to penetration of the paper/paper fibers, the water in the droplet is quickly evaporated from the ink while still resident on the paper surface. The evaporation process is substantially completed prior to an additional liquid ink being jetted onto the same or adjoining location of the recording medium. The evaporation is rapid enough to prevent the resident ink from substantially migrating/wicking to any adjacent location or into the recording medium. Further the drying energy is transferred to the resident ink spots from the same direction as the printheads ensuring less energy requirement.
摘要:
A surface analysis scanner system includes calibration targets, which include a target substrate and a film covering the surface of the target substrate which is scanned by the surface scanner. The film is antireflective to the particular scanned light. Particles which contaminate the antireflectance film on the substrate do not scatter sufficient light to be detected by the surface analysis scanner detectors and thus do not interfere with the calibration of the scanner. The calibration targets may include reference features which are etched into the substrate surface or deposited on the antireflectance coated substrate surface which scatter light in a manner similar to particles on a surface. The reference features may also be embedded in a transparent material supported by the antireflectance coated substrate with a second antireflectance film coating the upper surface of the transparent material. A surface analysis scanner system may also include a support structure for supporting an object to be scanned, an aperture structure, and a light trap structure for blocking the scanned light. Each structure includes a substrate having a coating of antireflectance film. A surface analysis scanner system may also include methods, utilizing antireflectance films, for reducing the amount of scanned light scattered by particles on a scanner system surface.