Abstract:
A voltage generating circuit includes a first charge pumping part and a second charge pumping part. The first charge pumping part pumps a switching voltage, in response to a reference voltage, to output a first voltage. The second charge pumping part pumps the switching voltage, in response to the first voltage, to output a second voltage that is lower than the first voltage that is varied in accordance with time.
Abstract:
Disclosed is an apparatus and method for adaptively allocating transmission power for beamforming combined with orthogonal space-time block codes (OSTBC) in a distributed wireless communication system, the apparatus comprising: a plurality of sub-arrays for beamforming, which are geographically distributed and each of which comprises a plurality of distributed antennas placed in random groups; and a central processing unit for identifying performances of subsets by applying a predetermined power allocation scheme according to subsets which can be obtained by combining the sub-arrays, by means of a Nakagami fading parameter and information about large-scale fading of each of the sub-arrays, fed back from a receiving party, for determining a subset having a best performance as an optimal subset according to the identified performances, and for performing power allocation based on the subset set as the optimal subset.
Abstract:
A display apparatus includes a display panel and a data driving part. The display panel includes pixels, data lines and gate lines. A transverse side of the pixels is disposed adjacent to the data lines extending along a first direction, and a longitudinal side of the pixels is disposed adjacent to the gate lines extending along a second direction. Two adjacent pixels of the pixels disposed adjacent to each other along the second direction are connected to one gate line of the gate lines. The data driving part transmits two-dot-inversed first direction data voltages to pixels disposed along the second direction and two-dot-inversed second direction data voltages to pixels disposed along the first direction.
Abstract:
A method of controlling power in a Base Station (BS) of a cellular system using wired Relay Stations (RSs) includes the RSs and the BS individually performing scheduling of packets to be transmitted to Mobile Stations (MSs) in respective areas of coverage, the BS increasing a difference between a sum of signals to be transmitted and a sum of interference signals according to a scheduling result, guaranteeing a minimum amount of data to be received by each MS, and calculating a power allocation solution of each MS, which satisfies a condition that the power allocation solution is in a range of allocatable power, which was pre-set by each of the RSs and the BS, and the RSs and the BS performing sub-channel allocation and power allocation according to the power allocation solution satisfying the condition.
Abstract:
Disclosed is a method of driving a display panel, which includes a plurality of data lines, a plurality of gate lines, a first pixel column electrically connected to an N-th gate line and a second pixel column electrically connected to an (N+1)-th gate line adjacent to the N-th gate line (wherein N is a natural number). In the method, compensation data of the first pixel for compensating for a kickback deviation between the first and second pixel columns is generated using first data and second data corresponding to the first and second pixel columns, respectively. The compensation data of the first pixel column and the second data of the second pixel column are converted to data voltages of an analog type to output the data voltages to the data lines.
Abstract:
An audio/video (A/V) device having a volume control function for external audio reproduction units by using volume control buttons of a remote controller is provided. The A/V device includes speakers, an audio output port for externally outputting an audio signal, an audio signal processing unit for reproducing and amplifying the audio signal and applying the amplified audio signal to the speakers or the audio output port, a memory unit for storing volume control values, and a control unit for applying to the audio signal processing unit any of the volume control values stored in the memory based on whether the external audio reproduction unit is plugged in the audio output port. The control unit controls the audio signal processing unit to adjust the volume control values for the audio output port by the volume control buttons when the external audio reproduction unit is plugged in the audio output port.
Abstract translation:提供了通过使用遥控器的音量控制按钮,具有用于外部音频再现单元的音量控制功能的音频/视频(A / V)设备。 A / V装置包括扬声器,用于外部输出音频信号的音频输出端口,用于再现和放大音频信号并将放大的音频信号施加到扬声器或音频输出端口的音频信号处理单元,用于 存储音量控制值,以及控制单元,用于基于外部音频再现单元是否插入音频输出端口,将存储在存储器中的任何音量控制值应用于音频信号处理单元。 当外部音频再现单元插入音频输出端口时,控制单元控制音频信号处理单元,以通过音量控制按钮调节音频输出端口的音量控制值。
Abstract:
A touchscreen display substrate includes; a plurality of pixel parts including a plurality of first pixel rows arranged in a first direction, and a plurality of pixel columns arranged in a second direction substantially perpendicular to the first direction, wherein each of the plurality of pixel parts includes a pixel electrode, and a plurality of sensing parts which sense a touch state, the sensing parts being disposed in an area corresponding to the plurality of pixel parts, and being sequentially arranged in the first direction between adjacent pixel parts of first plurality of pixel columns.
Abstract:
A method and apparatus for processing an image. The method and apparatus may each perform the operations of extracting motion information of an input signal calculating true motion information, which indicates whether an object of interest moves and an area where the object of interest moved, from the motion information, and deinterlacing the input signal by using the motion information with respect to an area that is determined to have true motion, such that the input signal is in a form before being compressed for transmission. The method and apparatus may further perform an operation of converting resolution of the deinterlaced input signal. In the converting of the resolution, the resolution may be converted by using the true motion information and the motion information.
Abstract:
Disclosed is a remote access unit for transmitting and receiving upstream and downstream data in which channels having different transmission scheme are multiplexed, and an optical network for bi-directional wireless communication using same. The remote access unit includes an antenna for receiving the downstream data and wirelessly transmitting same and for receiving the upstream data and providing same to the remote access unit, a switch for outputting downstream time division channels of the downstream data to the antenna and for receiving upstream time division channels of the upstream data from the antenna, and a controller for controlling the switch in order to prevent the upstream and downstream time division channels from overlapping.
Abstract:
Provided is a method for controlling a video server providing video and audio data to a plurality of clients via a communication network in real time. Analog audio signals and analog video signals are respectively converted into digital audio data and digital video data. The digital audio data and digital video data are compressed. The compressed digital audio data and digital video data are packetized to generate an audio packet and a video packet. The audio packet and video packet are converted into an audio/video RTP packet according to real-time transport protocol. The audio/video RTP packet are transmitted to the clients according to TCP/UDP-IP.