Abstract:
A method of displaying a portrait on a display is provided. The method includes determining whether a photographed image is a character-photographed image according to photographing information of the photographed image; executing face detection from the photographed image if it is determined that the photographed image is a character-photographed image; setting a character area in the photographed image according to a result of the face detection; and magnifying and displaying the character area on the display.
Abstract:
A signal processing method in a bridge-based RAS backbone network system is provided, in which an MN within a network periodically transmits to an HLR a route-update message for registration updating, if the MN is in active mode and transmits to the HLR a paging-update message having a transmission period longer than that transmission period of the route-update message, for registration updating, if the MN is in idle mode, each of bridges and the HLR stores location information about the MN in a soft state with an age set for the location information in a routing cache according to the route-update message received from the MN, and each of BSBs, SCBs, and an SIB selected from a plurality of SIBs stores location information about the MN in a soft state with an age set for the location information according to the paging-update message received from the MN.
Abstract:
Disclosed is an apparatus and method for adaptively allocating transmission power for beamforming combined with orthogonal space-time block codes (OSTBC) in a distributed wireless communication system, the apparatus comprising: a plurality of sub-arrays for beamforming, which are geographically distributed and each of which comprises a plurality of distributed antennas placed in random groups; and a central processing unit for identifying performances of subsets by applying a predetermined power allocation scheme according to subsets which can be obtained by combining the sub-arrays, by means of a Nakagami fading parameter and information about large-scale fading of each of the sub-arrays, fed back from a receiving party, for determining a subset having a best performance as an optimal subset according to the identified performances, and for performing power allocation based on the subset set as the optimal subset.
Abstract:
An apparatus and a method for adjusting a transmission rate of data, in particular a moving picture experts group 2 (MPEG-2) data is disclosed The apparatus includes a receiving buffer for buffering multi program transport stream (MPTS) packets received at various transmission rates, and a packet storage for storing MPEG-2 null packets. A signal processing section reads data buffered in the receiving buffer at a predetermined output transmission rate, wherein the signal processing section stops an operation of reading data buffered in the receiving buffer, and reads and transmits the MPEG-2 null packets stored in the packet storage when a predetermined underflow occurrence forecast situation is caused in the receiving buffer.
Abstract:
Disclosed is an apparatus and a method for performing time synchronization by using Global Positioning System (GPS) information in a communication system. The apparatus comprises a grand-master node having a GPS receiver, for generating a synchronizing message required to synchronize time on slave nodes by using Time Of Day (TOD) information received from the GPS receiver and at least one slave node for receiving the synchronizing message required to synchronize time from the grand-master node or from another slave node, for carrying out time synchronization operation by using an Offset and Frequency Compensation Clock (OFCC) synchronization process supporting time offset and frequency separation compensation, and for generating a synchronizing message required to synchronize time on other slave nodes.
Abstract:
A method of establishing a system delay time and a frame length in a Time Division Duplexing (TDD) system includes adjusting time lengths of an uplink (UL) frame, a downlink (DL) frame, a Transmit/receive Transition Gap (TTG), and a Receive/transmit Transition Gap (RTG); a Base Station (BS) transmitting a DL frame and receiving a UL frame; and a Mobile Station (MS) receiving the DL frame and transmitting the UL frame.
Abstract:
A fiber to the home FTTH network for convergence of broadcasting and communication is disclosed. The network includes: an OLT for receiving and converting a first predetermined number of broadcast signals and an Ethernet signal into a plurality of converted optical signals, combining the converted optical signals into converged optical signals for subsequent transmission by an optical wavelength division multiplexing method; and an optical network unit (ONU) for classifying the optical signal transmitted from the OLT into the first predetermined number of broadcast signals and the Ethernet signal, switching a second predetermined number of broadcasting signals of the first predetermined number of broadcasting signals according to each SIU by channel selection information contained in upstream Ethernet information, and switching the Ethernet signal to be transmitted to the SIU according to each SIU so as to transmit the switched signal.
Abstract:
A bridge-based cellular Ethernet system and a handover processing method therefore are provided. In the bridge-based cellular Ethernet system, an HLR manages configuration information about network entities, and a plurality of Base Station Bridges (BSBs) are connected to a plurality of Base Stations (BSs), each BSB including a layer 2 switch, and a plurality of SCBs connected to part of the BSBs under the SCBs. Each SCB includes a layer 2 switch forming a core network, and SCB monitors the signal power of a Mobile Node (MN) within its service area, determines whether the MN is to move to another site, selects a new SCB to which the MN is to move, sends necessary path information to associated SCBs and the HLR, for setting of the path information in the associated SCBs and the HLR, and commands a handover to the MN.
Abstract:
A signal processing method in a bridge-based RAS backbone network system is provided, in which an MN within a network periodically transmits to an HLR a route-update message for registration updating, if the MN is in active mode and transmits to the HLR a paging-update message having a transmission period longer than that transmission period of the route-update message, for registration updating, if the MN is in idle mode, each of bridges and the HLR stores location information about the MN in a soft state with an age set for the location information in a routing cache according to the route-update message received from the MN, and each of BSBs, SCBs, and an SIB selected from a plurality of SIBs stores location information about the MN in a soft state with an age set for the location information according to the paging-update message received from the MN.
Abstract:
A broadcast/communication convergence system, and an FTTH (Fiber To The Home) system that can accommodate broadcast signals of various channels and variable band signals by converging broadcast and communication signals and transmitting the converged broadcast and communication signals using an IEEE 1394 transmission method serving as a standard interface in the FTTH system for broadcast/communication convergence. An OLT (Optical Line Terminal) transfers a plurality of broadcast signals and a communication signal received from external broadcast and communication providers through a single optical signal (A). An ONU (Optical Network Unit) receives the optical signal (A) from the OLT, separates the received optical signal into the plurality of broadcast signals and the communication signal, opto-electrically converts the plurality of broadcast signals and the communication signal, switches the converted broadcast signals subscriber by subscriber, combines the converted communication signal with the switched converted broadcast signals. The result is transferred to a corresponding subscriber through a single optical signal (B). A gateway at each subscriber is implemented by IEEE 1394 protocol to receive the optical signal (B) from the ONU, separate the received optical signal into the broadcast signals and the communication signal, and transfer the broadcast signals and the communication signal to a corresponding subscriber device.