SCHEDULING RESTRICTION FOR CARRIER AGGREGATION OR DUAL CONNECTIVITY

    公开(公告)号:US20220191858A1

    公开(公告)日:2022-06-16

    申请号:US17440041

    申请日:2020-03-26

    Applicant: Apple Inc.

    Abstract: One or more methods of operating an access node. At least one of the methods includes: detecting a capability indication that indicates a capability of a user equipment (UE) to simultaneously receive and transmit (Rx/Tx) on a first component carrier (CC1) and a second component carrier (CC2); and scheduling, based at least on the capability, a first UE activity to occur over the CC1 and a second UE activity to occur over the CC2 to avoid a collision in a time-domain by prioritizing one of the first UE activity or the second UE activity relative to the other one of the first UE activity or the second UE activity.

    RSTD Measurement Report Mapping for NR Positioning

    公开(公告)号:US20220179033A1

    公开(公告)日:2022-06-09

    申请号:US17593584

    申请日:2020-02-12

    Applicant: Apple Inc.

    Abstract: A method, UE and integrated circuit for reporting RSTD values to a network. A user equipment (UE) is configured to establish a connection to a network, the network comprising a first cell and a second cell. The UE receives a positioning reference signal from each of the first and second cells, determines a frequency band for each of the positioning reference signals, determines reference signal time difference (RSTD) values from measured time offsets between the positioning reference signals from the first and second cells, determines RSTD reporting values based on at least the RSTD values and the determined frequency bands and transmits an indication of the RSTD reporting values to the network.

    USER EQUIPMENT TIMING ADVANCE VALIDATION WINDOW DESIGN FOR FREQUENCY RANGE 2 (FR2) SMALL DATA TRANSFER (SDT)

    公开(公告)号:US20250071855A1

    公开(公告)日:2025-02-27

    申请号:US18727045

    申请日:2022-01-07

    Applicant: APPLE INC.

    Abstract: Methods and apparatus for Timing Advance (TA) validation are disclosed. In some embodiments, a method for wireless communication at a user equipment (UE) comprises receiving, from a base station, configuration information, where the configuration information specifying a configured grant (CG)-small data transfer (SDT) resource available for use by the UE and specifying a configuration for a Reference Signal Received Power (RSRP) change-based TA validation method to be met in order to perform a SDT while in the RRC inactive state, the RSRP change-based TA validation method having configured TA validation criteria that is evaluated based on two measurement windows for timing advance (TA) validation, and at least one boundary of at least one of the two measurement windows for TA validation is based on a minimum of either a Frequency Range 2 (FR2) measurement period and a scaled Discontinuous Reception (DRX) cycle period, existing at time of TA validation criteria evaluation.

    HARQ Codebook Determination in Wireless Communications

    公开(公告)号:US20240405924A1

    公开(公告)日:2024-12-05

    申请号:US18806971

    申请日:2024-08-16

    Applicant: Apple Inc.

    Abstract: A user equipment (UE) and a network agree on the use of a hybrid automatic repeat request (HARQ) codebook. The UE receives a plurality of downlink control information (DCI) transmissions during a corresponding plurality of physical downlink control channel (PDCCH) monitoring occasions from the base station, wherein each DCI transmission schedules multiple physical downlink shared channel (PDSCH) transmissions on a corresponding one of a plurality of component carriers (CCs), receives a time domain resource allocation (TDRA) table configuration from the base station, determines a maximum number of PDSCH transmissions per CC based on the TDRA table configuration, groups the plurality of CCs together and determines a hybrid automatic repeat request (HARQ)-acknowledgement (ACK) codebook size based on a number of the multiple PDSCH transmissions, the maximum number of PDSCH transmissions, and a resulting ACK or negative acknowledgement (NACK) for each of the multiple PDSCH transmissions.

Patent Agency Ranking