Abstract:
User equipment (UE) operation in a single frequency network (SFN). The UE may receive one or more transmission configuration indication (TCI) states corresponding to one or more downlink resources, receive a demodulated reference signal (DMRS) wherein the DMRS is quasi co-located (QCLed) with one or more channel state information reference signal (CSI-RS) from multiple cells of a SFN and quasi co-location (QCL) information is included in the one or more TCI and determine a time and frequency offset corresponding to each of the multiple cells based on the CSI-RS.
Abstract:
A method, UE and integrated circuit for reporting RSTD values to a network. A user equipment (UE) is configured to establish a connection to a network, the network comprising a first cell and a second cell. The UE receives a positioning reference signal from each of the first and second cells, determines a frequency band for each of the positioning reference signals, determines reference signal time difference (RSTD) values from measured time offsets between the positioning reference signals from the first and second cells, determines RSTD reporting values based on at least the RSTD values and the determined frequency bands and transmits an indication of the RSTD reporting values to the network.
Abstract:
Embodiments include a user equipment (UE) and methods performed by the UE. The methods include receiving a measurement configuration request from a network, in response to the measurement configuration request, measuring a quality of one or more uplink (UL) carrier aggregation (CA) combinations, wherein each UL CA combination comprises a plurality of component carriers, generating a message that includes the quality of the one or more UL CA combinations and transmitting the message to the network. Further embodiments include the above operations being performed as a set of instructions executed by a processor or an integrated circuit that includes circuitry to perform the operations.
Abstract:
Some aspects of this disclosure include apparatuses and methods for implementing mechanisms for downlink control information between an electronic device (for example, a UE) and a network for cell detection and measurement. For example, some aspects relate to an electronic device including a transceiver and a processor communicatively coupled to the transceiver. The processor monitors one or more paging occasions within a discontinuous repetition cycle (DRX) and can make a determination of one or more paging occasions within the DRX to not monitor. Each paging occasion may include a transmission by the network of downlink control information for one or more paging messages.
Abstract:
A base station is configured to transmit wake-up signals to a user equipment to wake-up the UE to receive a page from the base station. The base station transmits one or more synchronization signals, wherein the synchronization signals correspond to a wake-up signal (WUS) that is to be transmitted to a user equipment (UE) operating in a paging discontinuous reception (DRX) cycle, wherein the paging DRX cycle includes a paging occasion (PO) and transmits the WUS to the UE during a WUS occasion, wherein the WUS indicates whether the UE is to utilize an active mode or a sleep mode during the PO.
Abstract:
A method, UE and integrated circuit for reporting RSTD values to a network. A user equipment (UE) is configured to establish a connection to a network, the network comprising a first cell and a second cell. The UE receives a positioning reference signal from each of the first and second cells, determines a frequency band for each of the positioning reference signals, determines reference signal time difference (RSTD) values from measured time offsets between the positioning reference signals from the first and second cells, determines RSTD reporting values based on at least the RSTD values and the determined frequency bands and transmits an indication of the RSTD reporting values to the network.
Abstract:
Apparatus and methods for a hybrid automatic repeat request (H-ARQ) mechanism for wireless communication devices of a wireless local area network (WLAN) are disclosed. Methods and apparatus to determine whether a packet is an original, first transmission or a retransmission of a previously transmitted packet without decoding the payload of the packet are disclosed. Medium access control (MAC) addresses of a transmitter, such as an access point (AP), and a receiver, such as a station (STA), of a WLAN are encoded separately with a retransmission bit to indicate whether the packet is retransmitted. For an aggregated MAC protocol data unit (A-MPDU), a sequence number is included to determine which MAC protocol data units (MPDUs) of the A-MPDU are retransmitted. When retransmission is indicated, the receiver of the STA performs a hybrid automatic repeat request (H-ARQ) process to combine the retransmitted packet with previously received packets.
Abstract:
The exemplary embodiments relate to determining that code block group (CBG) based transmissions are enabled, transmitting, via an unlicensed spectrum, configured grants comprising one or more CBG based transmissions and one or more transport block (TB) based transmissions and receiving a downlink feedback information (DFI) downlink control information (DCI) format, wherein the DFI DCI format comprises a hybrid automatic repeating request (HARQ) bitmap corresponding to the TB based transmissions and a HARQ bitmap corresponding to the CBG based transmissions. The exemplary embodiments may be implemented in a computer readable storage medium, a user equipment (UE) or an integrated circuit.
Abstract:
Some embodiments include an apparatus, method, and computer program product for using group based reporting for beam management in a 5G wireless communications system. A user equipment (UE) can determine based on a signal-to-interference-plus noise ratio (SINR) or reference signal received power (RSRP) measurement, a ranking of two or more beam combinations, and transmit the ranking to a 5G node B (gNB). The UE can receive from the gNB, a transmission configuration indicator (TCI) codepoint that identifies a combination of two or more beams, where the TCI codepoint is based at least on the ranking. The UE can receive simultaneous transmissions via the combination, and transmit a report to the gNB that identifies by the TCI codepoint, SINRs that corresponds to the combination. In some embodiments the UE can simultaneously transmit on a second combination identified by a sounding reference signal (SRS) resource indicator (SRI) codepoint.