Abstract:
A dispenser for holding multiple doses of fluids or other substances, and for dispensing the substances, has a vial, a flexible bladder received within the vial, and a variable volume storage chamber formed between the bladder and vial. A filling valve is coupled in fluid communication with the storage chamber and defines (1) a normally closed, fluid-tight position hermetically sealing the storage chamber from the ambient atmosphere, and (2) an open position allowing the passage of fluid through the valve both to evacuate the storage chamber and to introduce fluid through the valve to fill the storage chamber. A pump is coupled in fluid communication with the storage chamber for pumping fluids out of the storage chamber. A dispensing valve is coupled in fluid communication with the pump and defines (1) a normally closed, fluid-tight position preventing the passage of fluid out of the dispenser, and (2) an open position for dispensing pumped fluid therethrough. The sealed, empty dispenser is sterilized, such as by applying gamma radiation thereto. Then, the sterilized, sealed, empty dispenser is filled with fluid by engaging the filling valve with an evacuating/dispensing member to evacuate the storage chamber, and by introducing fluid from the filling member through the open filling valve and into the storage chamber. The filling member is withdrawn from the valve, and a spring moves the valve to a closed position to hermetically seal the fluid within the dispenser.
Abstract:
A syringe is provided for the delivery of controlled, metered amounts of any of numerous different substances to humans or animals, such as medicaments, pharmaceuticals, cosmetics, and food products, or to deliver materials which may react upon exposure to air, such as glue. The syringes include a body and a plunger. Means are provided in the syringe body and the plunger to effect controlled movement of the plunger into the syringe to permit delivery of a pre-determined amount of the substance contained in the syringe. A one-way valve is provided at the dispensing tip of the syringe to hermetically seal the portion of the syringe containing the substance to be dispensed.
Abstract:
A dispenser has a housing, and a variable-volume storage chamber formed within the housing and defining a substantially fluid-tight seal between the chamber and exterior of the housing for storing a substance to be dispensed. A piston is mounted within the housing, and a one-way valve is mounted within the housing and coupled in fluid communication with the variable-volume storage chamber. A compression chamber is coupled in fluid communication between the piston and one-way valve, and at least one of the piston and valve is manually depressible relative to the other between (i) a first position in which the piston is located at least partially outside of the compression chamber for permitting substance to flow from the variable-volume storage chamber into the compression chamber, and (ii) a second position in which the piston is located at least partially within the compression chamber for pressurizing substance within the compression chamber above a valve opening pressuring and, in turn, dispensing substance through the one-way valve and out of the dispenser.
Abstract:
An apparatus and method are provided for molding sterile parts. The apparatus has a first mold portion and a second mold portion. At least one of the first and second mold portions defines a mold cavity configured to receive a molten plastic and form therefrom at least one molded part At least one of the first and second mold portions is movable relative to the other between (i) a closed position for sealing the mold cavity or cavities and molding at least one part therein, and (ii) an open position defining a fluid passageway between the first and second mold portions and permitting the passage of a fluid sterilant therein. A fluid source that contains or otherwise generates a fluid sterilant, such as vaporized hydrogen peroxide, is connectable in fluid communication with the fluid passageway for introducing the sterilant into the fluid passageway with at least one of the first and second mold portions in the open position, and in turn contacting with the sterilant the surfaces of the first and second mold portions forming the fluid passageway and located adjacent to the at least one mold cavity, but not contacting an interior surface of a molded part within the mold cavity, to sterilize the exposed mold surfaces and thereby prevent contamination of the molded part.
Abstract:
A device for storing and dispensing a substance includes a container having a body defining therein a storage chamber for receiving and storing the substance. The container includes a first passageway that is in fluid communication with the storage chamber of the body and defines a flow path therebetween. The container also includes a pierceable wall located on an opposite side of the first passageway relative to the storage chamber, and a first threaded connecting portion located at one end of the body for connecting another component thereto. The device also includes a one-way valve assembly that includes a valve body including a body base defining a second passageway and a piercing portion mounted within the valve body and engageable with the pierceable wall of the container. At least one of the piercing portion and the pierceable wall is movable relative to the other between a first position wherein the pierceable portion is not piercing the pierceable wall, and a second position wherein the pierceable portion is piercing the pierceable wall and the first passageway of the container is in fluid communication with the second passageway of the valve body for allowing the flow of substance from the storage chamber therethrough. The valve assembly includes a second threaded connecting portion that is threadedly connectable to the first threaded connecting portion of the container for fixedly securing the valve assembly to the container when the valve assembly and container are located in the second position. A manually-engageable and removable member is disposed intermediate the valve body and the container that prevents movement of at least one of the piercing portion and pierceable wall to the second position until the removable member is removed. The valve assembly includes a valve seat and at least one flow aperture extending through the valve body adjacent to the valve seat and in fluid communication with the second passageway for receiving the substance from the storage chamber there through.
Abstract:
A container and method are provided for storing fat containing liquid products, such as infant or baby formula, or other milk-based products. The container includes a body defining a storage chamber for receiving the aseptic fat containing liquid product, and a first aperture in fluid communication with the storage chamber. The body does not leach more than a predetermined amount of leachables into the fat containing liquid product and does not undesirably alter a taste profile of the fat containing liquid product. A container closure assembly includes a stopper receivable within the first aperture for hermetically sealing the storage chamber. The stopper includes a first material portion defining an internal surface in fluid communication with the storage chamber forming at least most of the surface area of the container closure that can contact any fat containing liquid product within the storage chamber and that does not leach more than a predetermined amount of leachables into the fat containing liquid product or undesirably alter a taste profile of the fat containing liquid product. A second material portion of the stopper either (i) overlies the first material portion and cannot contact any product within the storage chamber, or (ii) forms a substantially lesser surface area of the container closure that can contact any product within the storage chamber in comparison to the first material portion. The second material portion is needle penetrable for filling the storage chamber with product, and a resulting needle aperture formed in the second material portion is thermally resealable such as by the application of laser energy to seal the product within the storage chamber. A sealing portion of the container closure is engageable with the body prior to needle filling the storage chamber to thereby form a substantially dry hermetic seal between the container closure and body.
Abstract:
A sterile filling machine and related method are provided for sterile filling a container with a substance. The container includes a heat resealable stopper and a chamber for receiving the substance therein. The sealed, empty containers are subjected to radiation capable of penetrating through the stopper and chamber for sterilizing the container. The previously sterilized containers are then transported through an e-beam chamber, wherein an electron beam is directed onto a penetrable surface of the stopper to sterilize the penetrable surface. A needle is mounted within the e-beam chamber and moved into engagement with the stopper to pierce the sterilized penetrable surface of the stopper and inject the substance through the needle and into the chamber of the container. The needle is then withdrawn from the stopper and the filled container is transported outside of the e-beam chamber. Laser energy is then transmitted onto the penetrated surface of the stopper to fuse the stopper material and hermetically re-seal the stopper.