Abstract:
An apparatus and method are provided for allocating an uplink resource for a User Equipment (UE). The method includes receiving a downlink control channel and a downlink data channel corresponding to the downlink control channel from a base station; identifying a Physical Uplink Control CHannel (PUCCH) resource index for the downlink data channel based on a first Control Channel Element (CCE) of the downlink control channel; and transmitting a PUCCH in an uplink subframe based on the identified PUCCH resource index.
Abstract:
An apparatus and method are provided for allocating response channel resources by a Node B in a wireless communication system. The method includes determining a Downlink Assigning Indicator (DAI) value of a first Physical Downlink Control Channel (PDCCH) message scheduling a Secondary cell (Scell), if the Scell is scheduled in a non cross-carrier manner; and transmitting Acknowledgement (ACK)/Negative Acknowledgement (NACK) Resource Indicator (ARI) information in a Transmit Power Control (TPC) field included in the first PDCCH message, if the DAI value is equal to a first value.
Abstract:
A sounding reference signal transmission method which is efficient in an uplink wireless telecommunications system using a multiple antenna technique and sounding reference signal hopping. A terminal using the multiple antenna technique is equipped with a plurality of antennas, and a base station receives the sounding reference signal transmitted from these antennas and estimates the uplink channel state of each antenna. Moreover, the sounding reference signal performs frequency hopping so that the base station determines the channel condition for the entire bandwidth to which data is transmitted in the uplink system. The sounding reference signal is transmitted through an antenna pattern in which the sounding reference signal can be transmitted through the entire data transmission bandwidth of the uplink system for each antenna of the terminal without additional overhead in this environment.
Abstract:
The present application discloses methods performed by a UE and a base station in a wireless communication system. A method performed by the UE includes receiving, from a base station, via higher layer signaling, one or more configurations for sounding reference signal (SRS) resources; receiving, from the base station, control information triggering a transmission of an aperiodic SRS, wherein the control information indicates a configuration among the one or more configurations for the SRS resources; and transmitting, to the base station, the aperiodic SRS based on the configuration.
Abstract:
The present disclosure provides a method for transmitting a synchronization signal (SS), the method comprising: performing a listen-before-talk (LBT) operation in a pre-defined window; if the LBT operation succeeds, transmitting an SS block (SSB) in the window, wherein the SSB comprises the SS, or the SSB comprises the SS and a physical broadcast channel (PBCH). Compared with the prior art, the present disclosure may significantly improve the efficiency of data transmission and the access performance for the communication system by relaxing the time when the base station implements the LBT, that is, allowing the base station to implement the LBT in the pre-defined window and transmit the SSB after the LBT succeeds.
Abstract:
Provided are a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), with a transmission and receipt processing method and device for time-frequency synchronization between V2X terminals. When a synchronization signal to be transmitted is identical to a synchronization signal of an existing D2D terminal, time-frequency resources configured for the D2D terminal in a cell are reused to transmit the synchronization signal. When synchronization signal to be transmitted is different from a synchronization signal of an existing D2D terminal, reconfigured time-frequency resources are used to transmit the synchronization signal. The synchronization signal transmitted by a V2X terminal indicates a corresponding synchronization source type by using a value of an SLSS sequence index and/or a value of a PSBCH specified field.
Abstract:
The present application discloses methods performed by a terminal and a base station in a wireless communication system, the methods including receiving configuration information on a sounding reference signal (SRS), the configuration information including a plurality of resource configurations for the SRS; receiving a physical layer signaling including information for triggering an SRS transmission, the information indicating a resource configuration among the plurality of the resource configurations; and transmitting the SRS based on the resource configuration indicated by the information.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Embodiments of the present disclosure provide a channel state information measurement method, including receiving, by the UE, configuration information indicating resources for a channel state information (CSI) measurement; receiving, by the UE, from a base station, signaling information indicating one or more resources in which the base station occupies a carrier on an unlicensed band; identifying, by the UE, at least one resource in which the base station occupies the carrier on the unlicensed band, based on the signaling information; generating a CQI report based on measurement results at the at least one identified resource, while excluding a measurement result of at least one resource in which the base station does not occupy a carrier on the unlicensed band; and transmitting the CQI report to the base station.
Abstract:
Methods and devices are provided for transmitting and receiving hybrid automatic repeat request acknowledgement (HARQ-ACK) information in a wireless communication system. Higher layer signaling is received that includes at least one of information indicating whether to apply HARQ-ACK spatial bundling to HARQ-ACK information to be transmitted on a physical uplink control channel (PUCCH) or information indicating whether to apply HARQ-ACK spatial bundling to HARQ-ACK information to be transmitted on a physical uplink shared channel (PUSCH). At least one HARQ-ACK information bit corresponding to downlink data received in at least one cell, is determined based on the higher layer signaling. HARQ-ACK information corresponding to the determined at least one HARQ-ACK information bit is transmitted on at least one of the PUCCH or the PUSCH.
Abstract:
The present disclosure provides a method for determining a resource of a communication by a terminal in a wireless communication system, the method comprising: receiving, from a base station, information on a minimum number of subframes for monitoring; determining a number of a plurality of subframes to be monitored based on the minimum number of subframes; identifying the plurality of subframes to be monitored for a sidelink transmission; and transmitting, to the base station, information indicating a set of subframes for the sidelink transmission selected based on the plurality of subframes.