Abstract:
A stylus support portion moveable in an X direction is arranged separate from a fixed portion. A plate spring has a first end fixated to an end portion of the stylus support portion in an X (+) direction, a second end fixated to the fixed portion, and a principal surface facing the X direction. A plate spring has a first end fixated to an end portion of the stylus support portion in an X (−) direction, a second end fixated to the fixed portion, and a principal surface facing the X direction. A first permanent magnet is provided on the end portion of the stylus support portion in the X (+) direction. A second permanent magnet is provided on the end portion of the stylus support portion in the X (−) direction. A third permanent magnet is provided to the fixed portion so that a magnetic force in the X direction acts on an area between the first permanent magnet and the third permanent magnet. A fourth permanent magnet is provided to the fixed portion so that the magnetic force in the X direction acts on an area between the second permanent magnet and the fourth permanent magnet.
Abstract:
A calculator includes a first filter, a second filter, and an adding device. The first filter outputs, as a first corrected value, a value in which displacement of a displacement table detected by a scale has been corrected based on first frequency transfer characteristics from a scale to a measured object station. The second filter outputs, as a second corrected value, a value in which the first corrected value is corrected based on second frequency transfer characteristics from a ball tip to a ball tip displacement detector. The adding device adds the second corrected value and displacement of the ball tip detected by the ball tip displacement detector to calculate a measured value.
Abstract:
A method improves focus height repeatability in a machine vision inspection system. A region of interest is defined within a field of view imaged by a camera portion, wherein an aligned edge feature in the region of interest may introduce a focus height sensitivity that varies depending on the aligned edge feature offset relative to the image pixels. A first set of focus-determining operations determines a focus height for the region of interest, and comprise at least one of: (a) operations that reduce the sensitivity of the focus height determination to the offset of the aligned edge feature relative to the image pixels; and (b) operations that adjust the offset of the aligned edge feature relative to the image pixels according to a predetermined offset repeatability criteria, such that the image data used in the focus height determination fulfills the offset repeatability criteria.
Abstract:
A compliant thumb wheel assembly coupled to a caliper jaw that moves along a caliper scale member along a measuring axis direction in a caliper comprises a thumb wheel, a compliant element, and a thumb wheel mounting portion rigidly coupled to the caliper jaw. The compliant element is configured to locate the thumb wheel in an operational arrangement for driving the caliper jaw while at the same time transmitting forces between the thumb wheel and the thumb wheel mounting portion by elastic deformation. When a force is applied to the thumb wheel along the measuring axis direction, the compliant element flexes such that the thumb wheel displaces along the measuring axis direction relative to the thumb wheel mounting portion and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
Abstract:
An optical measuring apparatus includes a light emitter, a scanner, a polarizing plate, a photoreceiver, and a CPU. The light emitter emits a laser beam. The scanner uses the laser beam emitted from the light emitter and scans a measurement region where a work piece is placed. The polarizing plate allows passage for only a laser beam, among the laser beams fired by the scanner, directed orthogonally to an emission direction of the laser beam and an axis direction of the work piece. The photoreceiver receives the laser beam that has passed through the measurement region and the polarizing plate. The CPU calculates a dimension of the work piece from a pattern of light and dark in a scan direction, the pattern being obtained by the photoreceiver.
Abstract:
A value of a current corresponding to a relationship between an illumination intensity instruction value and illumination intensity is calculated based on a previously obtained relationship between a current flowing through a light emitting device and the illumination intensity. A calibration table including the illumination intensity instruction value, the calculated value of the current, and the illumination intensity is created. A required illumination intensity is calculated based on exposure time per frame during autofocusing. An illumination intensity instruction value corresponding to the required illumination intensity is calculated using the calibration table. The calculated illumination intensity instruction value is set using the calibration table such that brightness of a measured image remains consistent even when a frame rate is changed.
Abstract:
A control unit shifts an imaging unit relatively with respect to a stage to take an image of a measuring object at a plurality of places by the imaging unit and thereby obtain a plurality of images, and generates a composite image of the measuring object having a range which is wider than an imaging range of the imaging unit by combining the plurality of images. The control unit shifts the imaging unit relatively with respect to the stage such that parts of images adjacent to one another obtained by the imaging unit overlap, and performs an image matching processing that performs image matching of an overlapped portion of the adjacent images. The control unit generates the composite image of the measuring object by joining the adjacent images at a position where the image matching is performed in the image matching processing.
Abstract:
Provided is a hardness tester and method including an indentation former creating an indentation in a sample surface with an indenter; a first area calculator calculating an area of the indentation during application of pressure, the indentation being formed in the sample surface while the indenter is pressed against the sample; an image capture controller controlling a CCD camera to obtain image data of the sample surface; a second area calculator calculating the area of the indentation remaining in the sample surface based on the obtained image data; an elasticity index calculator calculating an elasticity index of the sample based on the area of the indentation during application of pressure and the area of the indentation calculated by the second area calculator; and a hardness value calculator calculating a hardness value of the sample based on the indentation remaining in the sample surface.
Abstract:
An arm type three-dimensional measuring apparatus includes: a multi-jointed arm mechanism including a probe in a distal end; a processing part for computing a position of the probe, the probe being manually moved; a sensor which is formed in each axis of the multi-jointed arm mechanism and detects at least a force in one predetermined direction and torques in two predetermined axial directions generated in an attitude state of the multi-jointed arm mechanism, wherein the processing part computes a deflection amount in each axis of the multi-jointed arm mechanism based on an output of the sensor and sequentially computes a position of the probe based on the deflection amount.