Abstract:
An image measuring device includes an image capturer capturing an image of a work piece, a displacer relatively displacing the work piece and the image capturer, a position acquirer obtaining a position where the image is captured by the image capturer, a controller controlling the image capturer to capture partial images of the work piece while displacing the image capturer relative to the work piece at a fixed speed using the displacer, a total image former forming a total image of the work piece by pasting together a plurality of partial images captured by the image capturer based on position data obtained by the position acquirer, and a light source integrally displacing with the image capturer relative to the work piece and emitting light at a portion of the work piece captured by the image capturer.
Abstract:
A distance in a scanning direction between a first set of edges which face each other and exhibit an opposite change between light and dark is measured by an image measuring machine, and a bias correction value is calculated based on a difference between a measured value and a true value. Using the bias correction value, detection point correction values, which are correction values in various directions of edge detection points detected by a scan of a measured object using the image measuring machine, are calculated; a correction amount used in correction of the edge detection points is specified based on the detection point correction value in each direction; and the edge detection points are corrected using the correction amount.
Abstract:
A method includes obtaining a plurality of object images taken by an image pickup device while moving a focal position within a predetermined range, the image pickup device being capable of taking images at arbitrary focal positions within the predetermined range; calculating a first in-focus position within the predetermined range based on pieces of contrast information on a manually-taken object image group, the manually-taken object image group including the plurality of object images taken while manually moving the focal position within the predetermined range; and calculating a second in-focus position within the search range based on pieces of contrast information on an automatically-taken object image group including the plurality of object images taken while automatically moving the focal position within a search range, the search range being determined with reference to the calculated first in-focus position.
Abstract:
A method for eliminating lens flare that eliminates lens flare is provided. The lens flare elimination method performs: a step for acquiring images by irradiating the coaxial episcopic illumination light with varying irradiation intensities and capturing images at each irradiation intensity while the object is not placed on the mounting table; a step for capturing an image of the object by irradiating the object placed on the mounting table with the coaxial episcopic illumination light at an arbitrary irradiation intensity; a step for estimating an image for correction, which is the image at the irradiation intensity irradiated when the measurement object is captured, based on the images acquired in the image acquiring step; and a step for generating a post-correction image in which the lens flare is eliminated from the image of the object by obtaining the difference between the image of the object and the image for correction.
Abstract:
An image measuring apparatus, according to the present invention, captures an image of the measurement object and measures the dimensions of the measurement point of the measurement object by analyzing the image. The image measuring apparatus comprises: a display unit that displays the image of the measurement object; an input unit that accepts input of the trajectory traced by an operator on the image displayed on the display unit; an edge detection unit that detects an edge based on the traced trajectory on the image; and a measurement performing unit that performs measurement based on one or more detected edges.
Abstract:
A value of a current corresponding to a relationship between an illumination intensity instruction value and illumination intensity is calculated based on a previously obtained relationship between a current flowing through a light emitting device and the illumination intensity. A calibration table including the illumination intensity instruction value, the calculated value of the current, and the illumination intensity is created. A required illumination intensity is calculated based on exposure time per frame during autofocusing. An illumination intensity instruction value corresponding to the required illumination intensity is calculated using the calibration table. The calculated illumination intensity instruction value is set using the calibration table such that brightness of a measured image remains consistent even when a frame rate is changed.
Abstract:
An information processing apparatus includes: an obtaining unit configured to obtain a manually-taken object image group, the manually-taken object image group including a plurality of object images, the plurality of object images being generated by taking images of an object while moving a focal position of an image pickup device manually; a first calculator capable of calculating, based on pieces of contrast information on the plurality of object images in the obtained manually-taken object image group, a first in-focus position of the image pickup device relative to the object by performing fitting using a predetermined function; and a driver capable of moving, based on an autofocus instruction input by a user, the focal position of the image pickup device to the calculated first in-focus position.
Abstract:
An information processing apparatus includes: an obtaining unit configured to obtain a manually-taken object image group, the manually-taken object image group including a plurality of object images, the plurality of object images being generated by taking images of an object while moving a focal position of an image pickup device manually; a first calculator capable of calculating, based on pieces of contrast information on the plurality of object images in the obtained manually-taken object image group, a first in-focus position of the image pickup device relative to the object by performing fitting using a predetermined function; and a driver capable of moving, based on an autofocus instruction input by a user, the focal position of the image pickup device to the calculated first in-focus position.
Abstract:
A vision measuring device includes: a camera which images a workpiece and transfers image information of the workpiece; a position control unit which controls an in-focus position of the camera and outputs the in-focus position as position information representing a position in a Z-axis direction; and a vision measuring machine which performs vision measurement on the workpiece based on image information and position information. The position control unit acquires and retains position information in response to a trigger signal output from the camera or the position control unit to the other at a certain timing of an imaging period during which the camera images the workpiece. The vision measuring machine calculates position information representing a position of image information in the Z-axis direction based on image information transferred from the camera and position information output from the position control unit, and performs auto-focusing control.
Abstract:
A vision measuring device includes: a camera which images a workpiece and transfers image information of the workpiece; a position control unit which controls an in-focus position of the camera and outputs the in-focus position as position information representing a position in a Z-axis direction; and a vision measuring machine which performs vision measurement on the workpiece based on image information and position information. The position control unit acquires and retains position information in response to a trigger signal output from the camera or the position control unit to the other at a certain timing of an imaging period during which the camera images the workpiece. The vision measuring machine calculates position information representing a position of image information in the Z-axis direction based on image information transferred from the camera and position information output from the position control unit, and performs auto-focusing control.