Abstract:
There is disclosed photovoltaic device structures which trap admitted light and recycle it through the contained photosensitive materials to maximize photoabsorption. For example, there is disclosed a photosensitive optoelectronic device comprising: a first reflective layer comprising a thermoplastic resin; a second reflective layer substantially parallel to the first reflective layer; a first transparent electrode layer on at least one of the first and second reflective layer; and a photosensitive region adjacent to the first electrode, wherein the first transparent electrode layer is substantially parallel to the first reflective layer and adjacent to the photosensitive region, and wherein the device has an exterior face transverse to the planes of the reflective layers where the exterior face has an aperture for admission of incident radiation to the interior of the device.
Abstract:
Disclosed is a device comprising: an anode; a cathode; an inorganic substrate; and at least one organic window layer positioned between: the anode and the inorganic substrate; or the cathode and the inorganic substrate. Also disclosed is a method of enhancing the performance of a photosensitive device having an anode, a cathode, and an inorganic substrate, comprising: positioning at least one organic window layer between the anode and the cathode. In one embodiment the organic window layer may absorb light and generate excitons that migrate to the inorganic where they convert to photocurrent, thereby increasing the efficiency of the device. Also disclosed is a method of enhancing Schottky barrier height of a photosensitive device, the method being substantially similar to the previously defined method.
Abstract:
An organic photosensitive optoelectronic device includes an anode, a cathode, and a donor-acceptor heterojunction between the anode and the cathode, the heterojunction including a donor-like material and an acceptor-like material, wherein at least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound, wherein the subporphyrin or subporphyrazine compound includes boron.
Abstract:
A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.
Abstract:
An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.
Abstract:
An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.
Abstract:
Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
Abstract:
An organic photosensitive optoelectronic device having near infrared sensitivity and the method of fabrication thereof are described. The organic photosensitive optoelectronic device comprises a first electrode and a second electrode and organic photoactive materials comprising ClAlPc.
Abstract:
Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
Abstract:
The present disclosure relates to photosensitive optoelectronic devices comprising at least one of an electron blocking or hole blocking layer. Further disclosed are methods of increasing power conversion efficiency in photosensitive optoelectronic devices using at least one of an electron blocking or hole blocking layer. The electron blocking and hole blocking layers presently disclosed may reduce electron leakage current by reducing the dark current components of photovoltaic cells. This work demonstrates the importance of reducing dark current to improve power conversion efficiency of photovoltaic cells.