Abstract:
The present invention discloses an electronic inductance circuit for the power supply of a 2-wire bus intercom system and a device thereof. The electronic inductance circuit comprises a main circuit path along an inductor and a source terminal and a drain terminal of a FET between the input terminal and the output terminal of said electronic inductance circuit, in which said inductor is connected to said source terminal of said FET; a resistor and a freewheeling diode individually connected to said inductor in parallel; and a secondary circuit path along a capacitor connected with a second resistor in series between said input terminal and said output terminal, which is connected to said main circuit path in parallel. The solutions of the present invention achieve larger direct current power supply for the 2-wire intercom system and stable alternating current impedance with fast response to the DC power supply.
Abstract:
An exemplary energy auditing system and a method for obtaining a validated performance solution for a plant are provided. An exemplary system and method includes at least one processor that obtains plant data for calculating one or more performance metrics. An initial benchmark is generated using performance metrics, a tunable process model and an optimizer. A rules engine is used for applying rules based on a dynamic input on the initial benchmark and current performance metrics, and for generating an output. A decision analysis module is used for validating if the output meets the specifications of the dynamic input using a what-if analysis. If the specifications are met, then the output is provided as a validated performance solution. If the specifications are not met, then the benchmark is evolved and the validating steps are repeated.
Abstract:
Stripping structure strips insulation from ends of a plurality of leads of a lead bundle. Each lead includes a conductor member coated with the insulation. The structure includes a housing having wall structure defining a stripping chamber, an inlet in fluid communication with the stripping chamber, and an outlet in fluid communication with the stripping chamber. A cover has an opening for receiving an end of the lead bundle in a sealing manner so that the leads thereof are received in the stripping chamber. Chemical stripping solution is in communication with the inlet. When the lead bundle is received through the opening with the leads in the stripping chamber and when the chemical stripping solution is provided though inlet and in the stripping chamber, the chemical stripping solution strips the insulation from the conductor members, with the stripping solution along with stripped insulation exiting through the outlet.
Abstract:
A vacuum interrupter is disclosed with a fixed contact and a movable contact placed axially in a spaced apart relationship. The ceramic insulator cylinders each surround the fixed contact and the movable contact. A floating shield within the ceramic cylinders has a floating potential flange disposed between the two ceramic cylinders, and exposed to external ambient. Encapsulation for at least one contact terminal extends from a metallic end cap of the corresponding contacts to cover a respective ceramic cylinder by an overlapping distance.
Abstract:
Technologies for individualized building automation include a building automation application server, a building controller, and several mobile computing devices. Each mobile computing device generates individualized sensor data based on the time and location of the mobile computing device and sensor data indicative of a building system control parameter. The sensor data may include temperature data, humidity data, or other environmental data, and may be received by the mobile computing device from one or more external sensors. The building automation application server receives the individualized sensor data from the mobile computing devices and generates a building system configuration based on the individualized sensor data. The building automation application server may optimize the building system configuration for cost, efficiency, or user comfort based on the individualized sensor data. The mobile computing devices and the building automation application server may communicate via one or more collection servers. Other embodiments are described and claimed.
Abstract:
A fluid-cooled stator assembly for electrical machines. The stator assembly may include a stator core having a back iron portion and a plurality of stator teeth. Each of the plurality of stator teeth may be separated from each other by at least one of plurality of slots, the slots being structured to receive placement of stator windings. The apparatus also includes a thermal management conduit that is positioned at various locations about the stator assembly, including within or along the back iron portion, stator teeth, slots, and/or among the stator windings. Further, the thermal management conduit may provide insulation for one or more coils of the stator windings. Additionally, at least a portion of the thermal management conduit may be formed from a thermally conductive polymer. The thermal management conduit is configured to convey a thermal management fluid in a heat exchange relationship with the stator assembly.
Abstract:
A protection arrangement for inaccessibly located power distribution equipment includes a first enclosure with power equipment and sensors, a second enclosure adjacent the first enclosure and including a signal handling device, at least one sealed electrical conductor passage between the first and second enclosures, each comprising at least one penetrator through the walls of the first and second enclosures. The signal handling device in the second enclosure is connected to the sensors in the first enclosure via electrical conductors passing through said sealed electrical conductor passages and to an external protection device via a communication link. The signal handling device receives electrical sensor signals from the sensors and shapes them for submission to the external protection device.
Abstract:
A high voltage valve arrangement includes a high voltage valve unit; an external electric shield structure arranged at least partially around the high voltage modular valve unit and a grounding system. The grounding system includes a grounding system configured to be remotely extended from a retracted position to an extended position, whereby the extendable grounding device establishes electric connection with the external shield structure when it is extended from the retracted position.
Abstract:
An exemplary method for engineering a Distributed Control System (DCS) having at least one Input/Output device and at least one controller that are communicatively connected. A user is prompted to request an application type and select a variant from one or more variant options, at least one device is identified from a plurality of devices available in the DCS, selecting at least one function block including function fragments from a library based on the user input, instances of function fragments are created and at least one instance of function fragments is arranged based on the at least one identified device from the plurality of devices and configuring the at least one identified device based on the created instances of function fragments. The selected solution variant option is determined from the arranged function fragments and changes are made dynamically to satisfy one or more identified DCS conditions.
Abstract:
A microgrid connecting at least one distributed electricity generator includes a first switch configured for, in a closed position, connecting the microgrid to a first network line at a first point of common coupling (PCC) and for, in an open position, disconnecting the microgrid from the first network line at the first PCC; a second switch configured for, in a closed position, connecting the microgrid to a second network line at a second PCC, and for, in an open position, disconnecting the microgrid from the second network line at the second PCC; and a control unit configured for, when an islanding event has been detected when the second switch is in its closed position and the first switch is in its open position, acting to close the first switch, bringing it to its closed position.