Abstract:
An electron beam generating apparatus for an electron beam source having surface conduction electron emitting devices formed on a substrate; includes a measuring unit for measuring a device current flowing through each of the surface conduction electron emitting devices, an a device current storage unit for storing data measured by the measuring unit. In addition comparing unit compares latest data measured by the measuring unit with the data stored in the device current storage unit, a correction value storage unit stores a correction value for correcting a driving signal to be applied to each surface conduction electron emitting device, and an adjusting unit adjusts the correction value stored in the correction value storage unit.
Abstract:
A surface-conductive electron beam source having a fine particle film which is formed by repeating a film formation step of applying and calcining an organic metal compound solution several times. A pair of electrodes come in contact with the fine particle film, and an electron-emitting portion is formed at a part of the fine particle film. There is also a display device having the electron beam source, a modulation means for modulating an electron beam emitted from the electron beam source in accordance with an information signal, and an image-forming member for forming an image by the irradiation of the electron beam.
Abstract:
A method for making the electron emission apparatus is provided. In the method, an insulating substrate including a surface is provided. A number of grids are formed on the insulating substrate and defined by a plurality of electrodes. A number of conductive linear structures are fabricated and supported by the electrodes. The number of conductive linear structures are substantially parallel to the surface and each of the grids contains at least one of the conductive linear structures. The conductive linear structures are cut to form a number of electron emitters. Each of the electron emitters has two electron emission ends defining a gap therebetween.
Abstract:
A field emission device includes a cathode, an anode, an emitter, a first adjusting electrode, and a second adjusting electrode. The emitter electrically connects to the cathode. The cathode, the first adjusting electrode, and the second adjusting electrode electrically connect to an electrode down-lead. The anode electrically connects another electrode down-lead. The cathode is disposed between the first adjusting electrode and the second adjusting electrode.
Abstract:
An image display apparatus includes a rear plate including electron emitting devices each including a pair of electrodes and an electron emitting unit, first wirings each interconnecting electrodes in one of the pair of electrodes of the electron emitting devices arrayed at the same row, second wirings each interconnecting electrodes in another of the pair of electrodes of the electron emitting devices arrayed at the same column and higher in resistance than the first wirings, an insulating layer covering the second wirings, and resistive films connected to the first wirings and partially overlapping with the second wirings to cover the insulating layer, and having surface resistance set to 108Ω/□ or more. The resistive films are connected to the first wirings at portions not overlapping with the second wirings, and a length L of the resistive film between a portion of the resistive film connected to the first wiring and a portion overlapping with the second wiring satisfies a relationship.
Abstract:
In case of forming films in plural positions with an ink jet head having plural nozzles, to provide a method of efficiently correcting an aberration in the liquid droplet applying position resulting for example from a distortion of a substrate, thereby producing an electron source with a high production yield. Positions of device electrodes 2, 3 on the electron source substrate 1 are detected by fetching in advance a surface image of the substrate 1, then a position of an electroconductive film 4 is calculated as a liquid droplet applying position, and an inclination angle θ of the ink jet head 11 is so regulated that a pitch of the nozzles 12 matches a pitch d of the obtained liquid droplet applying positions.
Abstract:
A fabricating method of an electron-emitting device includes at least the following steps. A substrate having a first side and a second side is provided. The first side is opposite to the second side. A first electrode pattern layer is formed on the first side of the substrate. A conductive pattern layer is formed on the substrate and the first electrode pattern layer, and the conductive pattern layer partially covers the first electrode pattern layer. An electron-emitting region is formed in the conductive pattern layer. A second electrode pattern layer is formed on the second side of the substrate. The second electrode pattern layer partially covers the conductive pattern layer. The fabricating method has a simple fabricating process and a low fabricating cost.
Abstract:
An electron emission apparatus includes an insulating substrate, one or more grids located on the substrate, wherein the one or more grids includes: a first, second, third and fourth electrode that are located on the periphery of the grid, wherein the first and the second electrode are parallel to each other, and the third and fourth electrodes are parallel to each other; and one or more electron emission units located on the substrate. Each the electron unit includes at least one electron emitter, the electron emitter includes a first end, a second end and a gap; wherein the first end is electrically connected to one of the plurality of the first electrodes and the second end is electrically connected to one of the plurality of the third electrodes; two electron emission ends are located in the gap, and each electron emission end includes a plurality of electron emission tips.
Abstract:
An image display apparatus includes a rear plate including electron emitting devices each including a pair of electrodes and an electron emitting unit, first wirings each interconnecting electrodes in one of the pair of electrodes of the electron emitting devices arrayed at the same row, second wirings each interconnecting electrodes in another of the pair of electrodes of the electron emitting devices arrayed at the same column and higher in resistance than the first wirings, an insulating layer covering the second wirings, and resistive films connected to the first wirings and partially overlapping with the second wirings to cover the insulating layer, and having surface resistance set to 108Ω/□ or more. The resistive films are connected to the first wirings at portions not overlapping with the second wirings, and a length L of the resistive film between a portion of the resistive film connected to the first wiring and a portion overlapping with the second wiring satisfies a relationship.
Abstract:
An electron emission apparatus includes an insulating substrate, one or more grids located on the substrate, wherein the one or more grids includes: a first, second, third and fourth electrode that are located on the periphery of the gird, wherein the first and the second electrode are parallel to each other, and the third and fourth electrodes are parallel to each other; and one or more electron emission units located on the substrate. Each the electron unit includes at least one electron emitter, the electron emitter includes a first end, a second end and a gap; wherein the first end is electrically connected to one of the plurality of the first electrodes and the second end is electrically connected to one of the plurality of the third electrodes; two electron emission ends are located in the gap, and each electron emission end includes a plurality of electron emission tips.