Abstract:
A supported catalyst for olefin polymerization, a preparation method and use thereof. The catalyst comprises a porous carrier A, a magnesium-containing carrier B, and a supported active component containing a transitional metal of titanium. The catalyst is a highly efficient Ziegler-Natta titanium-based catalyst having a composite support formed by a magnesium compound and a silicon compound, wherein the raw material for the magnesium compound may be any soluble magnesium salt. The supported catalyst may be used for preparing olefin homopolymers or olefin copolymers. According to the present invention, the molecular weight, molecular weight distribution of the olefin homopolymer or olefin copolymer as well as the contents and distribution of the comonomers may be adjusted conveniently by means of changing the factors such as types and amounts of organometallic co-catalyst and molecular weight regulator.
Abstract:
A dual frequency liquid crystal may be stabilized in the blue phase by a polymer matrix to provide an improved blue phase temperature range having a magnitude of at least about 65° C. Polymer-stabilized, blue phase dual frequency liquid crystal compositions and methods for producing polymer-stabilized, blue phase dual frequency liquid crystals are disclosed.
Abstract:
A method and apparatus for improving a hydrogen utilization rate in a hydrogenation hot high-pressure separation process. Hydrogenated distillate oil, a gas product and hydrogen pass through an inertia separation distributor arranged in an inlet of a hot high-pressure separator under high pressure for preliminary gas-liquid separation, and a gas phase goes to a subsequent system; a liquid phase goes into a hot low-pressure separator. Releases a part of low-pressure separated gas (mainly hydrogen) after preliminary separation through an injection flash separator in the hot low-pressure separator, and is divided into a gas phase and a liquid phase based on gravitational settling; hydrogen and some micro bubbles that are still dissolved in hot low-pressure separated oil under the pressure are separated from the oil through a centrifugal degassing device; the gas phase exits from the apparatus after carried liquid droplets are removed completely through hydrocyclone separation or coalescence separation, and distillate oil goes to a subsequent facility.
Abstract:
A method of preparing a polyester/polyolefin hot-melt adhesive for use in a solar cell bus bar is disclosed, in which 2,6-naphthalenedicarboxylic acid and ethylene glycol are first sequentially subjected in a predetermined ratio to esterification and polycondensation in the presence of a certain amount of a titanium-based catalyst to result in a polyethylene naphthalate (PNT) with a weight-average molecular weight of 16,000˜20,000. The PNT is then melt-blended with a low-density polyethylene (LDPE) in the presence of a compatibilizer to produce the hot-melt adhesive that can be shaped into films having a high light transmittance, good mechanical properties, high heat and yellowing resistance and thus particularly suitable for use in solar cell bus bars.