Abstract:
System and method for substantially reducing an involvement of an applications processor in receiving data from a touchscreen display. In one aspect, the system includes a controller may be configured in an autonomous mode where it automatically measures the touchscreen display based configuration information received from the applications processor, determines notable events based on the measurement data, stores data and event identifiers related to the notable events in a memory, and sends a notification to the applications processor when event data is available In another aspect, the system includes a controller that filters user interactions events and transmits data related to only notable events to the applications processor. Because of the autonomous and event filtering operations of the touchscreen controller, there are substantially less communications between the controller and the applications processor. This improves the speed and efficiency of the applications processor.
Abstract:
Apparatus and methods for partial evaluation of synaptic updates in neural networks. In one embodiment, a pre-synaptic unit is connected to a several post synaptic units via communication channels. Information related to a plurality of post-synaptic pulses generated by the post-synaptic units is stored by the network in response to a system event. Synaptic channel updates are performed by the network using the time intervals between a pre-synaptic pulse, which is being generated prior to the system event, and at least a portion of the plurality of the post synaptic pulses. The system event enables removal of the information related to the portion of the post-synaptic pulses from the storage device. A shared memory block within the storage device is used to store data related to post-synaptic pulses generated by different post-synaptic nodes. This configuration enables memory use optimization of post-synaptic units with different firing rates.
Abstract:
A noise reduction apparatus for digital cameras is presented that includes groups of one or more connected non-linear filter units. Each of the filter unit groups are driven by decimated input image data at a different level of decimation and the output of at least one of these filter unit groups serves as one of a plurality of inputs to another filter unit group driven at a different decimation level. Filtered image data from one or more filter unit groups is adaptively combined in response to one or more image metrics related to one or more local regional image characteristics.
Abstract:
The optimal configuration of a number of optional pipeline stages within the data paths of systems-on-chip is determined by application of a solver. The solver includes variables such as: the placement of modules physically within the floorplan of the chip; the signal propagation time; the logic gate switching time; the arrival time, after a clock edge, of a signal at each module port; the arrival time at each pipeline stage; and the Boolean value of the state of activation of each optional pipeline stage. The optimal configuration ensures that a timing constraint is met, if possible, with the lowest possible cost of pipeline stages.
Abstract:
A method and NoC design tool is disclosed that automatically maps the paths listed in a timing report and the unit size in an area report to the topology of a NoC and displays the paths and unit sizes in a GUI. The tool can also automatically add pipeline stages, separated by the maximum delay allowed in the timing budget, in order to achieve timing closure in an automated way.
Abstract:
A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. The software and hardware engines are optimized to take into account short-term and long-term synaptic plasticity in the form of LTD, LTP, and STDP.
Abstract:
Embodiments are directed towards automatically creating a cinemagraph on at least an imaging device, where the cinemagraph can be created without additional user interaction beyond capturing an initial sequence of images, and indicating that a cinemagraph is to be created from the sequence. Automatic creation of the cinemagraph includes selecting an anchor frame within the sequence and aligning the other frames to the anchor frame. Detection and segmentation of moving objects within the sequence, with respect to the anchor frame are performed. A mask is generated and refined. Segmentation of masks are then unified, and combined with a background from the anchor frame to generate an animated sequence.
Abstract:
A noise reduction apparatus for digital cameras is presented that includes groups of one or more connected non-linear filter units. Each of the filter unit groups are driven by decimated input image data at a different level of decimation and the output of at least one of these filter unit groups serves as one of a plurality of inputs to another filter unit group driven at a different decimation level. Filtered image data from one or more filter unit groups is adaptively combined in response to one or more image metrics related to one or more local regional image characteristics.
Abstract:
A method of capturing a digital image with a digital camera includes determining a first exposure level for capturing an image based on a first luminance level of the image, determining a second exposure level for capturing the image based on a threshold exposure level of the image, configuring an exposure level of a sensor of the digital camera based on the second exposure level, capturing the image as a digital image, and adding a non-linear digital gain to the digital image based on a difference between the first exposure level and the second exposure level.
Abstract:
Embodiments are directed towards determining within a digital camera whether a pixel belongs to a foreground or background segment within a given image by evaluating a ratio of derivative and deviation metrics in an area around each pixel in the image, or ratios of derivative metrics across a plurality of images. For each pixel within the image, a block of pixels are examined to determine an aggregate relative derivative (ARD) in the block. The ARD is compared to a threshold value to determine whether the pixel is to be assigned in the foreground segment or the background segment. In one embodiment, a single image is used to determine the ARD and the pixel segmentation for that image. Multiple images may also be used to obtain ratios of a numerator of the ARD, useable to determine an extent of the foreground.