Abstract:
An organic light emitting diode (OLED) display a includes: a substrate; an organic light emitting element on the substrate and including a first electrode, a light emission layer, and a second electrode; and an encapsulation layer on the substrate while covering the organic light emitting element. The encapsulation layer includes an organic layer and an inorganic layer. A mixed area, where organic materials forming the organic layer and inorganic materials forming the inorganic layer co-exist along a plane direction of the encapsulation layer, is formed at the boundary between the organic layer and the inorganic layer.
Abstract:
An organic light emitting device including a substrate on which an organic light emitting unit is formed, wherein the organic light emitting unit sequentially includes a first electrode, an organic layer, and a second electrode; and a passivation layer covering the substrate and the second electrode, and a method of manufacturing the organic light emitting device.
Abstract:
An organic electroluminescent (EL) display device and a method of manufacturing the same are provided. The organic electroluminescent display device includes a rear substrate, a organic EL portion formed on one surface of the rear substrate with a first electrode, an organic layer and a second electrode sequentially laminated. The front substrate is coupled to the rear substrate to seal an internal space in which the organic EL portion is accommodated, for isolating the organic EL portion from the outside. The front substrate further has a transparent moisture-absorbing layer coated on its internal surface.
Abstract:
An organic light emitting diode display includes: a substrate main body having a plurality of pixel regions, each including an opaque region and a transparent region; and organic light emitting diodes, thin film transistors, and conductive lines that are formed in the opaque region of the substrate main body. The transparent region includes a transparent square space that has an area that is at least 15% of the entire area of the pixel region.
Abstract:
A transparent organic light emitting display device having an improved transmittance, in which transmittance of external light is increased, the organic light emitting display device including: a substrate having transmitting regions interposed between pixel regions; thin film transistors positioned on a first surface of the substrate and respectively disposed in the pixel regions of the substrate; a passivation layer covering thin film transistors; pixel electrodes formed on the passivation layer and respectively electrically connected to the thin film transistors, the pixel electrodes are respectively located in an area corresponding to the pixel regions, and are disposed to respectively overlap and cover the thin film transistors; an opposite electrode facing the pixel electrodes and formed to be able to transmit light, the opposite electrode is located in the transmitting regions and the pixel regions and includes a first opening formed on a location corresponding to at least a portion of respective ones of the transmitting regions; and an organic emission layer interposed between respective ones of the pixel electrodes and the opposite electrode to emit light.
Abstract:
An organic light-emitting display device includes a first substrate having transmitting regions and pixel regions separated from each other by the transmitting regions, a plurality of thin film transistors on the first substrate in the pixel regions, a passivation layer covering the plurality of thin film transistors, a plurality of pixel electrodes on the passivation layer and electrically connected to the thin film transistors, the pixel electrodes being in the pixel regions and overlapping the thin film transistors, an opposite electrode in the transmitting regions and the pixel regions, the opposite electrode facing the plurality of pixel electrodes and being configured to transmit light, an organic emission layer interposed between the pixel electrodes and the opposite electrode, and a color filter in corresponding pixel regions.
Abstract:
Embodiments of the present invention are directed to a heterocyclic compound and an organic light-emitting device including the heterocyclic compound. The organic light-emitting devices using the heterocyclic compounds have high-efficiency, low driving voltages, high brightness and long lifespans.
Abstract:
Provided is an organic light emitting diode employing a luminescent efficiency improvement layer containing a compound represented by Formula 1 below: The OLED including the luminescent efficiency improvement layer containing the compound represented by Formula 1 can have excellent luminescent efficiency.
Abstract:
An organic light-emitting device including: a substrate; a first electrode disposed on the substrate; a second electrode disposed on the substrate and comprising silver (Ag); an emission layer between the first electrode and the second electrode; an electron injection layer between the emission layer and the second electrode and comprising a mixture of an alkali metal-containing compound and a first metal; and a capping layer disposed on the second electrode.