Abstract:
An organic electroluminescent device includes first and second substrates facing and spaced apart from each other; a gate line on an inner surface of the first substrate; a semiconductor layer over the gate line, the semiconductor layer overlying a surface of the first substrate; a data line crossing the gate line; a data ohmic contact layer under the data line, the data ohmic contact layer having the same shape as the data line; a power line parallel to, or substantially parallel to, and spaced apart from the data line, the power line including the same material as the gate line; a switching thin film transistor connected to the gate line and the data line, the switching thin film transistor using the semiconductor layer as a switching active layer; a driving thin film transistor connected to the switching thin film transistor and the power line, the driving thin film transistor using the semiconductor layer as a driving active layer; a connection pattern connected to the driving thin film transistor, the connection pattern including a conductive polymeric material; a first electrode on an inner surface of the second substrate; an organic electroluminescent layer on the first electrode; and a second electrode on the organic electroluminescent layer, the second electrode contacting the connection pattern.
Abstract:
A method of fabricating a liquid crystal display device includes forming a first testing terminal along a side surface of a first substrate, forming a second testing terminal along a side surface of a second substrate, attaching the first and second substrates together to expose the first and second testing terminals, and conducting a lighting test using the first and second testing terminals.
Abstract:
A method of fabricating a color filter substrate for a liquid crystal display device includes forming a black matrix on a substrate, adhering a color transcription film to the substrate, disposing a laser head over the color transcription film, repeatedly scanning a laser beam across a surface of the color transcription film using the laser head, removing the color transcription film so that a color filter pattern remains within color filter pattern regions defined by the black matrix, and polishing a surface of the color filter pattern to planarize a surface of the color filter pattern.
Abstract:
An optical sheet optimization method includes the steps of: extracting a statistic sample using transmissivity, haze data and luminance data of an optical diffusion sheet corresponding to the transmissivity and the haze data; making a regression model for the extracted statistic sample; calculating a regression coefficient to minimize an error term (residual) of the regression model and deriving a regression expression using the calculated regression coefficient; and predicting a luminance of the optical diffusion sheet due to changes of the transmissivity and the haze data using the derived regression expression.
Abstract:
A liquid crystal display device includes first and second substrates, a plurality of gate lines and data lines on the first substrate, a plurality of switching devices at cross portions of the gate and data lines, a passivation layer on the plurality of switching devices, a plurality of ball spacers on the passivation layer, a color filter layer on the second substrate, and a plurality of column spacers on the color filter layer.
Abstract:
A liquid crystal display device for removing residual charge includes a plurality of data lines and a plurality of gate lines arranged along vertical and horizontal directions, respectively, on a transparent substrate, a source driver for supplying data voltage to the data lines, a gate driver for supplying gate voltage to the gate lines, and a plurality of common voltage lines connected to the data lines and the gate lines through a plurality of static electricity preventing units, wherein at least one of the static electricity preventing units is directly connected to the source driver.
Abstract:
A transflective liquid crystal display device and a fabricating method thereof are disclosed in the present invention. The transflective liquid crystal display device includes a substrate having a reflective portion and a transmissive portion, a gate line on the substrate, a data line crossing the gate line and defining a pixel region, a thin film transistor connected to the gate line and the data line, a first organic material layer in the pixel region, the first organic material layer having a plurality of uneven patterns at the reflective portion, a second organic material layer on the first organic material layer, the second organic material layer having an open portion at the transmissive portion, and a reflective layer on the second organic material layer having a transmissive hole at the open portion.
Abstract:
A method of fabricating a liquid crystal display device having a concave reflector includes forming a switching element on a substrate, the switching element comprising a gate electrode, a semiconductor layer, a source electrode, and a drain electrode, forming a first insulating layer on the substrate including the switching element, forming a plurality of photoresist patterns on the first insulating layer, patterning the first insulating layer to have a concave surface by using the photoresist patterns as masks, and forming a reflector on the first insulating layer having the recessed uneven surface.
Abstract:
A liquid crystal display device includes a back-light assembly for radiating light onto a liquid crystal panel,a main frame having a hook protrusion formed along an upper part for mounting the back-light assembly and the liquid crystal display panel, and a case-top having a plurality of hook plates positioned adjacent to the hook protrusion of the main frame, wherein the case-top includes a bent portions enclosing an edge portion of the liquid crystal display panel and a side portion of the main frame.
Abstract:
An electric field alignment method of liquid crystal display including the steps of: applying a first voltage to a gate terminal of a thin film transistor for driving a liquid crystal cell having ferroelectric liquid crystal, wherein the first voltage is below a threshold voltage of the thin film transistor; and supplying a second voltage for electric field alignment of the ferroelectric liquid crystal to the liquid crystal cell by using leakage current of the thin film transistor generated due to the first voltage.