Abstract:
A unique positioning of a discharge tube relative to a pivot axis of a check valve in a compressor reduces the wear and fatigue stresses on the pivoting check valve components. The tube is centered on an axis that is non-perpendicular to an axis that is parallel to the pivot axis of the check valve, and in one embodiment was at 45°. With the inventive positioning of the discharge tube relative to the pivot axis, the flow streamlines heading from the discharge port to the discharge tube are no loner normal to the flapper valve surface, and the amount of wear between moving valve components and fatigue stresses are reduced.
Abstract:
A heat pump design with an economizer flash tank provides an efficient way to operate the system in both heating and cooling modes. Various expansion device types can be employed with this design. The invention enhances system performance in both cooling and heating modes of operation, through utilization of the flash tank economizer cycle, in simplistic and cost effective manner, while sustaining expansion device and entire system functionality through an appropriate refrigerant rerouting around the compressor and the flash tank.
Abstract:
A scroll compressor lubrication system includes a number of embodiments where lubricating oil impinges off surfaces adjacent to the orbiting scroll. The impinged oil creates a lubrication mist, which is deposited on the back surface of the orbiting scroll baseplate. The surface of the orbiting scroll onto which the oil has been deposited rubs against and carries the oil to the back chamber seals and to the back chamber. The seals thus are being lubricated by oil transfer from the back surface of the orbiting scroll to the seals. Sine the oil is deposited on the surface of the orbiting scroll, while it is exposed to suction pressure, only minimal pressurization of oil is required. Thus, there is no damage to the back pressure chamber seals due to over pressurization.
Abstract:
A heat pump is provided with a method and control for eliminating compressor un-powered reverse rotation at shutdown. In particular, the position of the four-way reversing valve is changed and the heat pump is moved to the opposite mode of operation as compared to the one it had been operated before shutdown. The compressed refrigerant, that might otherwise re-expand through the compressor and cause the compressor to run in reverse, is now communicated to the suction line of the compressor, while the discharge port of the compressor communicates with a refrigerant at suction pressure. Thus the unpowered reverse rotation of the compressor is no longer possible.
Abstract:
Compressor performance is affected by the size of an economizer or by-pass port area. To achieve variation in size, an insert is inserted into an economizer and/or unloader flow passage to provide a desired port area. The insert may be selected from a number of available insert sizes having different sized openings. In this way, a compressor designer can minimize machining time by keeping same flow passage geometry for different compressor sizes and applications.
Abstract:
Refrigerant system schematics are provided with enhanced humidity and temperature control of the air supplied to an environment to be conditioned. In particular, an economizer cycle is incorporated to be utilized in a combination with a reheat coil. Proposed system configurations enhance system performance characteristics, offer more steps of unloading, especially in the reheat mode of operation, and operate at improved reliability. Additionally, due to the enhanced performance of the economizer cycle, the reheat coil size can be reduced.
Abstract:
An expansion device for the heat pump applications consists of a flow resistance device that has a different resistance to refrigerant flow depending on the flow direction through this device. The flow resistance device has no moving parts so that it avoids the damage, wear and contamination problems of the moveable piston in the prior art. The flow resistance device is a fixed obstruction about which the fluid must flow when traveling through the expansion device.
Abstract:
A tandem compressor system is utilized that receives refrigerant from a common suction manifold, and from a common evaporator. From the compressors, the refrigerant passes to a plurality of condensers, with each of the condensers being associated with a separate zone for heat rejection, preferably at different temperature levels. Each of the condensers is associated with at least one of the plurality of compressors. A reheat coil is associated with the evaporator to improve comfort level in the environment to be conditioned. Multiple reheat circuits associated with separate condensers are employed to provide various stages of reheat or to condition separate environments. By utilizing the common evaporator, a plurality of condensers, and the reheat coils, the ability to independently control temperature, humidity and amount of heat rejection to a number of zones is achieved without the requirement of having dedicated circuits with multiple additional components. Thus, the overall system cost and complexity is significantly reduced and its operational and control flexibility is improved.
Abstract:
A tandem compressor refrigerant system where an economizer circuit and reheat coil are incorporated to provide additional flexibility and control over overall system capacity and sensible heat ratio as well as to increase system efficiency. In this system, tandem compressors deliver compressed refrigerant to a common discharge manifold, and then to a common condenser. From the common condenser, the refrigerant passes to a plurality of evaporators, with each of the evaporators being associated with a separate environment to be conditioned. Each of the evaporators is associated with one or several of the plurality of compressors. By utilizing the common condenser, yet a plurality of evaporators, the ability to independently condition a number of sub-environments is achieved without the requirement of the same plurality of complete separate refrigerant circuits for each compressor. In particular, the economizer circuit provides additional capacity to any of the evaporators that have a relatively high load while the reheat coil provides improved dehumidification. Various design schematics and system configurations are disclosed.
Abstract:
A heat pump system operates in heating and cooling modes. The heat pump is provided with both a reheat function and economizer circuit. The economizer circuit provides augmented performance to the heat pump, while the reheat coil allows enhanced control over temperature and humidity of the air supplied to the conditioned space. A bypass line around an outdoor heat exchanger is also provided to achieve additional flexibility of control for a sensible heat ratio. Selective operation of the abovementioned components and subsystems allows precise control over system operation parameters and hence satisfaction of a wide spectrum of sensible and latent load demands and improved reliability.