Abstract:
To provide a coloring photosensitive composition and a lithographic printing plate precursor, ensuring that coloring stability after exposure by infrared laser exposure is good and high coloring is obtained even when exposed after the elapse of time.These can be a coloring photosensitive composition containing a microgel encapsulating (A) a polymer having a glass transition temperature of 50° C. or more, (B) a photoinitiator, and (C) an infrared absorbing dye, and a lithographic printing plate precursor having an image-recording layer containing the composition.
Abstract:
A processing method of a lithographic printing plate precursor includes: exposing imagewise a lithographic printing plate precursor comprising a support on a surface of which at least one of: a hydrophilizing treatment; and an undercoat layer has been provided and an image-recording layer, to cure an exposed area of the image-recording layer; and undergoing developing processing with an aqueous solution having pH of from 2 to 10, wherein the aqueous solution comprises an amphoteric surfactant and an anionic surfactant selected from an anionic surfactant having an aliphatic chain and a total number of carbon atoms included in the aliphatic chain of 6 or more and an anionic surfactant having an aromatic ring and a total number of carbon atoms of 12 or more, and a content of the anionic surfactant is from 0.1 to 3.3% by weight of the aqueous solution.
Abstract:
A plate making method of a lithographic printing plate precursor includes: exposing imagewise a lithographic printing plate precursor including a support and an image-forming layer and containing (A) a compound generating an acid with light or heat, (B) an aromatic hydrocarbon compound or heterocyclic compound substituted with a functional group containing a nitrogen atom and (C) an aromatic aldehyde protected with an acid-decomposable group; and removing an unexposed area of the image-forming layer of the lithographic printing plate precursor by supplying at least one of dampening water and ink on a cylinder of a printing machine.
Abstract:
A lithographic printing plate precursor is provided that includes, above a support, a photosensitive layer including (i) a binder polymer, (ii) an ethylenically unsaturated compound, and (iii) a polymerization initiator, the ethylenically unsaturated compound (ii) including a compound represented by Formula (1) below. (In Formula (1), L denotes an (m+n)-valent linking group, the Ds independently denote a group selected from the group consisting of groups represented by Formulae (A) to (D) below, the Rs independently denote a monovalent substituent, m denotes an integer of 1 to 20, and n denotes an integer of 2 to 20.) (In Formulae (A) to (D), X, Y, and Z independently denote an oxygen atom, a sulfur atom, or NR17, R4 to R14 and R17 independently denote a hydrogen atom or a monovalent substituent, R15 denotes a hydrogen atom or a methyl group, R16 denotes a monovalent substituent, and k denotes an integer of 0 to 4.) There is also provided a process for producing a lithographic printing plate, including an exposure step of imagewise exposing the lithographic printing plate precursor and a development step of removing the photosensitive layer of a non-exposed portion in the presence of a developer having buffering capacity.
Abstract:
An imageable element can be imaged using non-ablative processes. This element has a non-silicone, non-crosslinked layer contiguous to and under an ink-repelling crosslinked silicone rubber layer. These elements can be used for providing lithographic printing plates useful for waterless printing (no fountain solution). Processing after imaging is relatively simple with either water or an aqueous solution consisting essentially of a surfactant or mechanical means to remove the crosslinked silicone rubber layer and a minor portion of the non-silicone, non-crosslinked layer in the imaged regions.
Abstract:
Both positive-working and negative-working imageable element can have a radiation-sensitive imageable layer that has at least one pigment colorant that does not change color when heated, and at least one dye that can change color when heated. The dye is soluble in the solvent or mixture of solvents used to coat the radiation-sensitive imageable layer on a substrate and the pigment colorant is not. This combination of pigment colorant and dye provide excellent image contrast after imaging, development, and postbaking. The pigment colorant and the dye independently have a maximum absorption of from about 480 to about 700 nm.
Abstract:
A lithographic printing plate precursor includes a support and an image-recording layer containing a star polymer, a radical polymerizable compound and a radical polymerization initiator, the star polymer is a star polymer in which a polymer chain is branched from a central skeleton via a sulfide bond and the polymer chain contains an acid group and a crosslinkable group in a side chain of the polymer chain.
Abstract:
The invention is directed to a negative lithographic printing plate precursor including a support and an image-recording layer, wherein a layer containing a star polymer is provided between the support and the image-recording layer, and the star polymer is preferably a polymer in which from 3 to 10 polymer chains are branched from a central skeleton.
Abstract:
A singe- or multilayer lithographic printing plate precursor comprises on a substrate a radiation-sensitive coating that comprises a copolymer soluble or dispersible in aqueous alkaline solution and comprising (meth)acryl recurring units, imide recurring units, and amide recurring units derived from corresponding ethylenically unsaturated polymerizable monomers; the copolymer provides increased chemical resistance for the lithographic printing plate precursors which can be negatively or positively working.
Abstract:
Negative lithographic printing plate having on a substrate a photosensitive layer comprising an alkaline soluble polymeric binder, an alkaline insoluble polymeric binder, a polymerizable monomer, and an initiator is described. The photosensitive layer is imagewise exposed with a radiation to cause hardening in the exposed areas, and then developed to remove the non-hardened areas. The combination of both alkaline soluble polymeric binder and alkaline insoluble polymeric binder in a photosensitive layer can give excellent combined durability, developability, and coatability.