Method for manufacturing a high strength steel sheet and sheet obtained

    公开(公告)号:US11339454B2

    公开(公告)日:2022-05-24

    申请号:US16898395

    申请日:2020-06-10

    Applicant: ArcelorMittal

    Abstract: A method for manufacturing a steel sheet having a yield strength YS of more than 1000 MPa, a tensile strength TS of more than 1150 MPa and a total elongation E of more than 8%, includes the steps of—preparing a steel sheet through rolling from a steel containing in percent by weight 0.19% to 0.22% C, 2% to 2.6% Mn, 1.45% to 1.55% Si, 0.15% to 0.4% Cr, less than 0.020% P, less than 0.05% S, less than 0.08% N, 0.015% to 0.070% Al, the reminder being Fe and unavoidable impurities; and soaking the sheet at an annealing temperature TA between 860° C. and 890° C. for a time between 100 s and 210 s, cooling the sheet to a quenching temperature QT between 220° C. and 330° C., from a temperature TC not less than 500° C. at a cooling speed not less than 15° C./s, heating the steel sheet during a time between 115 s and 240 s up to a first overaging temperature TOA1 higher than 380° C., then heating the sheet during a time between 300 s and 610 s up to a second overaging temperature TOA2 between 420° and 450° C., cooling the steel sheet to a temperature less than 100° C. at a cooling speed less than 5° C./s. The structure of the steel contains more than 80% of tempered martensite, more than 5% of retained austenite, less than 5% of ferrite, less than 5% of bainite and less than 6% of fresh martensite.

    Process and device for measuring wear of a refractory lining of a receptacle intended to contain molten metal

    公开(公告)号:US11268766B2

    公开(公告)日:2022-03-08

    申请号:US16465913

    申请日:2016-12-12

    Applicant: ArcelorMittal

    Abstract: A process for measuring wear of a refractory lining of a receptacle intended to contain molten metal, containing the following steps: scanning a first surface of the refractory lining using a first laser scanner in order to obtain a first initial set of data representative of the first surface, scanning a second surface of the refractory lining using a second laser scanner, distinct from the first laser scanner, in order to obtain a second initial set of data representative of the second surface, wherein the second surface includes a grey zone for the first laser scanner, the receptacle defining an obstacle located between the first laser scanner and the grey zone during scanning by the first laser scanner, and calculating a final set of data using the first initial set of data and the second initial set of data, the final set of data being representative of a surface of the refractory lining including the first surface and the second surface.

    WIND TURBINE MAST SECTION, WIND TURBINE MAST AND ASSEMBLY METHOD

    公开(公告)号:US20220010778A1

    公开(公告)日:2022-01-13

    申请号:US17289574

    申请日:2018-10-30

    Applicant: ArcelorMittal

    Abstract: A mast section (1) including a wall includes two tubular mast elements (14) stacked and arranged edge to edge at a joining plane (P), each element (14) comprising two wall segments (16) connected by segment connectors (26) extending along the longitudinal edges of the segments (16). The mast section (1) comprises element connectors (36) each extending across and connecting the elements (14) together. The element connectors (36) are arranged either on the inner surface (12) and outer surface (13) of the wall and the segment connectors (26) are arranged on the other surface, each element connector (36) extending at least partially opposite at least one of the segment connectors (26) in a radial direction of the mast section (1) such that the wall is placed between said element connector (36) and the segment connector (26).

Patent Agency Ranking