Abstract:
In one aspect of the disclosure, a method of wireless communication includes receiving, at a transmitter, data for transmission over an unlicensed carrier, calculating, at the transmitter, a first available extended clear channel assessment (ECCA) opportunity of the unlicensed carrier after the receiving, wherein the calculating uses at least network information and a pseudo-random number, performing a clear channel assessment (CCA) check, by the transmitter, on the unlicensed carrier at the first available ECCA opportunity, in response to detecting a clear CCA check, transmitting channel reserving signals, by the transmitter, onto the unlicensed carrier, and in response to failing to detect the clear CCA check, calculating, by the transmitter, a next available ECCA opportunity of the unlicensed carrier using at least the network information and another pseudo-random number.
Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Techniques are described for wireless communication. One method includes implementing, at a first node, a first access protocol to contend for access to a wireless communication medium shared by a plurality of nodes; determining whether a triggering event has occurred; and implementing, at the first node, a second access protocol to contend for access to the wireless communication medium based at least in part on a determination that the triggering event has occurred.
Abstract:
Systems and methodologies are described that facilitate mitigating effect of non-linear distortion from a power amplifier on a spectral mask margin. Power limit indications can be analyzed in scheduling mobile devices. Mobile devices with power limits can be scheduled on inner subbands. The power limits can be based at least in part on power amplifier headroom information. Other mobile devices can employ remaining portions of an allocated spectrum. Further, mobile devices can evaluate and establish a power amplifier backoff based upon the subband scheduling.
Abstract:
Techniques for supporting peer-to-peer (P2P) communication and wide area network (WAN) communication are disclosed. In one aspect, a method operable by a network entity to facilitate peer-to-peer (P2P) communication in a wireless network includes designating a first group of subframes in a wide area network (WAN) uplink (UL) spectrum for WAN communication. The method includes designating a second group of subframes in the WAN UL spectrum for P2P communication. The method further includes allowing P2P mobile entities to use WAN physical layer channels in the second group of subframes to communicate P2P control information and P2P data.
Abstract:
Channel state information (CSI) feedback in long term evolution (LTE) and LTE-Advanced (LTE-A) networks including unlicensed spectrum is disclosed in which a base station obtains clear channel assessment (CCA) result information from neighboring base stations, either directly or by determining such results from measurement or reports from user equipment (UE) served by the base station. The base station may then generate control signaling based on the CCA result information for transmission to the one or more UEs served by the base station.
Abstract:
Methods and apparatus for wireless communication are described. A method may include receiving at a user equipment (UE) a number of allocated interlaces for an uplink transmission over a shared spectrum, each of which may include a plurality of non-contiguous resource blocks (RB) of the shared spectrum. In some cases, the number of allocated interlaces is unsupported by joint interlace precoding hardware of the UE and the allocated interlaces may be partitioned into subsets of interlaces which may be a size supported by the joint interlace precoding hardware. Reference signals may be generated for the RBs of the allocated interlaces according to a reference signal sequence based on an ordering of the RBs for the allocated interlaces within the shared spectrum.
Abstract:
Methods, systems, and devices are described for wireless communication. One method may include receiving, at a first base station, at least one clear channel assessment (CCA)-exempt transmission (CET) indicating timing information of at least a second base station over a shared spectrum. A timing of the first base station may be adjusted based on the received timing information of the second base station. Another method of wireless communication may include identifying a CCA slot assigned to a first base station for a frame, which may be associated with time synchronization, of a shared spectrum. A CCA may be performed at the identified CCA slot for the frame. When the CCA is successful, a first timing information of the first base station may be selectively transmitted during the frame. When the CCA is unsuccessful, a second timing information of a second base station may be listened for during the frame.
Abstract:
Techniques are described for channel access in a radio frequency spectrum band shared by a number of asynchronous operators. One or more clear channel assessment (CCA) procedures may be used to contend for one or more transmission periods in the radio frequency spectrum band. When the contention is won for one or more transmission periods, a determination may be made as to whether the a number of transmission periods for which contention has been won is equal to or greater than a threshold number of consecutive transmission periods. If the number of transmission periods for which contention has been won is at or above the threshold number, occupancy of the radio frequency spectrum band may be relinquished for a period of time, in order to allow another operator to access the radio frequency spectrum band.
Abstract:
Techniques are described for wireless communications utilizing multiple clear channel assessment (CCA) procedures for access to a radio frequency spectrum band. A first CCA procedure is performed to determine availability of the radio frequency spectrum band and to contend for use of the radio frequency spectrum band among a number of coordinated operators transmitting on the radio frequency spectrum band. A successful first CCA procedure results in winning the contention for the radio frequency spectrum band for a transmission period that is coordinated among the number of coordinated operators. Upon the successful first CCA procedure, a second CCA procedure is performed during a discontinuous transmission (DTX) period in the transmission period to determine continued availability of the radio frequency spectrum band. The timing of the DTX periods is determined based on timing of radio transmissions having priority use of the radio frequency spectrum band.