摘要:
Methods of operating a fuel cell system, wherein the fuel cell system is purged at system start-up, are disclosed. The purging automatically stops when the anode plenum is fully purged and replaced with fuel. Also discussed are purge valves that are manually turned ON but are automatically turned OFF as the fuel cell's production of electricity reaches a predetermined level, e.g., steady state or thereabout. The purge valve may be opened at system start-up, or may be opened at system shut-down so that the purge valve is armed and the fuel cell system is purged at the next start-up. Also disclosed is integrated fluidic interface module that contains various fluidic components including one of these purge valves. The integrated fluidic interface module can operate passively or without being actively controlled.
摘要:
The disclosure relates to a securing device (100) for an elongate member, the securing device (100) comprising a plurality of teeth (108) that are configured to engage an outer surface of the elongate member such that the teeth (108) provide less of a barrier to movement of the securing device (100) relative to the elongate member in a first axial direction (104) than in an opposite, second axial direction (106), wherein the teeth (108) are spaced apart from each other both in an axial direction (104, 106) and a circumferential direction (114).
摘要:
The invention is a hydrogen generator with a liquid reservoir, a reaction area, a byproduct containment area and a hydrogen containment area within a housing. A liquid from the liquid reservoir can react within the reaction area to produce hydrogen gas and byproducts, which flow to the byproduct containment area, and hydrogen gas passes into the hydrogen containment area and is released from the housing through a hydrogen outlet as needed. The liquid reservoir and the reaction area are each within a container made of a liquid impermeable material, the byproduct containment area is within a flexible container made of a hydrogen permeable, liquid impermeable material, and the hydrogen containment area is within a flexible container made of a hydrogen impermeable material. The byproduct containment area is in a volume exchanging relationship with one or both of the liquid reservoir and the reaction area.
摘要:
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.
摘要:
Embodiments of the present invention relate to a fluid distribution system. The system may include one or more electrochemical cell layers, a bulk distribution manifold having an inlet, a cell layer feeding manifold in direct fluidic contact with the electrochemical cell layer and a separation layer that separates the bulk distribution manifold from the cell feeding manifold, providing at least two independent paths for fluid to flow from the bulk distribution manifold to the cell feeding manifold.
摘要:
Embodiments relate to a composite for a fuel cell layer including a plurality of electron conducting components, a plurality of ion conducting components each having a first surface and a second surface and wherein each ion conducting component is positioned between two electron conducting components. The electron conducting components and the ion conducting components form a layer and at least one of the ion conducting components or the electron conducting components is geometrically asymmetric in one or more dimensions.
摘要:
A strip of fuel cell components (200) comprising: a plurality of fuel cell components (202) spaced apart in a first direction; an indexing structure (210) connected to the plurality of fuel cell components, the indexing structure configured to define the position of one of the plurality of fuel cell components in the first direction; wherein the indexing structure is made from a different material to the plurality of fuel cell components. A component transfer mechanism for transferring a fuel cell sub-component to a substrate, using a roller and transfer tape. A strip of fuel cell components with a sub-component which is rotatable about a pivot. An apparatus and a method for assembling a fuel cell by applying a sub-component to an underside of a strip moving on a conveyor.
摘要:
The invention relates to a strip of fuel cell components comprising a plurality of fuel cell components spaced apart in a first direction and a support structure connected to the plurality of fuel cell components. The plurality of fuel cell components comprise a first surface. The support structure comprises two lateral fold regions between adjacent fuel cell components such that the support structure is foldable in order for the first surfaces of the plurality of fuel cell components to face in the same direction when folded.
摘要:
A fuel cell stack assembly has a plurality of cells in a stack configuration. Each cell comprises a membrane-electrode assembly disposed between an anode flow plate and a cathode flow plate. A current collector plate is disposed at each end of the stack and a compression assembly maintains the stack under compression. At least one of the current collector plates is formed as a printed circuit board having a first face disposed against a cathode flow plate or an anode flow plate of an outermost cell in the stack and a second face opposite the first face. The first face includes an electrically conductive layer disposed on a substrate of the printed circuit board to serve as a stack current collector electrode. Electrical components such as temperature sensors can be mounted on the printed circuit board such that they lie in or adjacent to a flow channel extending along an adjacent face of the anode or cathode flow plate. The printed circuit board can provide laterally extending connection tabs for electrical connection to the current collector electrode and to the electrical components.
摘要:
A hydrogen generator with improved volume efficiency and a method of producing hydrogen gas with the hydrogen generator are disclosed. A fluid containing a reactant is transported from a reactant storage area to a reaction area. Hydrogen gas passes through, and an effluent pass from the reaction area into the effluent storage area that is in a volume exchanging relationship with one or both of the reactant storage area and the reaction area. An initially compressed filter is disposed in the effluent storage area to remove solids from the hydrogen gas. The filter is attached to a moveable partition separating the effluent storage area from the reactant storage area and/or the reaction area, and the filter expands as the volume of the effluent storage area increases.