Abstract:
An organic light emitting diode display includes a thin film transistor (TFT) substrate, which has TFTs for an array of pixels. Each TFT has a gate electrode, a source electrode, and a drain electrode. An organic layer is disposed over the TFT substrate. The organic layer has through-hole above the drain electrode. The display also includes pixel electrodes disposed over the organic layer. Each pixel electrode is connected to the drain electrode in the through-hole of the organic layer for each pixel. An organic light emitting diode (OLED) layer is disposed over the pixel electrode for each pixel. The organic light emitting layer is divided into pixels or sub-pixels by a pixel defining layer over the pixel electrode. The display further includes a common electrode and a conductive layer disposed over the OLED layer such that the conductive layer does not block light emission from the organic light emitting layer.
Abstract:
An electronic display system has a light transmissive panel, a region of display elements on the panel, and source lines coupled to the display elements. A demultiplexor circuit has multiple groups of pass gates. Each pass gate has a pair of complimentary on-panel transistors, and the signal outputs of each group are connected to a respective group of the source lines. A display driver integrated circuit (IC) receives video data and timing control signals. A signal input of each group of pass gates is connected to a respective output pin of the driver IC. The display driver IC provides digital timing control signals to control the pass gates of the demultiplexor circuit. Other embodiments are also described.
Abstract:
A liquid crystal display (LCD) includes an array of pixels over a thin film transistor (TFT) substrate. The TFT substrate includes a TFT that has a first metal layer to form a gate electrode and a second metal layer to form a source electrode and a drain electrode for each pixel. The LCD also includes an organic insulation layer disposed over the TFT substrate, where the organic insulator layer has trenches on a top surface. The LCD further includes a third metal layer disposed over the organic insulation layer in the trenches, the trenches having a trench depth at least equal to the thickness of the third metal layer. The LCD also includes a passivation layer over the third metal layer, and a pixel electrode for each pixel over the passivation layer. The LCD further includes a polymer layer over the pixel electrode, and liquid molecules on the polymer layer.
Abstract:
A touch screen including display pixels with capacitive elements is provided. The touch screen includes first common voltage lines connecting capacitive elements in adjacent display pixels, and a second common voltage line connecting first common voltage lines. Groups of pixels can be formed as electrically separated regions by including breaks in the common voltage lines. The regions can include a drive region that is stimulated by stimulation signals, a sense region that receives sense signals corresponding to the stimulation signals. A grounded region can also be included, for example, between a sense region and a drive region. A shield layer can be formed of a substantially high resistance material and disposed to shield a sense region. A black mask line and conductive line under the black mask line can be included, for example, to provide low-resistance paths between a region of pixels and touch circuitry outside the touch screen borders.
Abstract:
A touch screen including display pixels with capacitive elements is provided. The touch screen includes first common voltage lines connecting capacitive elements in adjacent display pixels, and a second common voltage line connecting first common voltage lines. The pixels can be formed as electrically separated regions by including breaks in the common voltage lines. The regions can include a drive region that is stimulated by stimulation signals, a sense region that receives sense signals corresponding to the stimulation signals. A grounded region can also be included, for example, between a sense region and a drive region. A shield layer can be formed of a substantially high resistance material and disposed to shield a sense region. A black mask line and conductive line under the black mask line can be included, for example, to provide low-resistance paths between a region of pixels and touch circuitry outside the touch screen borders.
Abstract:
Displays with touch sensing circuitry integrated into the display pixel stackup are provided. An integrated touch screen can include multi-function circuit elements that can operate as circuitry of the display system to generate an image on the display, and can also form part of a touch sensing system that senses one or more touches on or near the display. The multi-function circuit elements can be, for example, capacitors in display pixels that can be configured to operate as storage capacitors/electrodes, common electrodes, conductive wires/pathways, etc., of the display circuitry in the display system, and that may also be configured to operate as circuit elements of the touch sensing circuitry.
Abstract:
Gate driver circuitry that controls an array of display elements is described. The gate driver circuitry has gate drivers that apply a control pulse to each of a number of gate lines in sequence, from a previous gate line to a current gate line, during a frame interval in which the array of display elements is filled with pixel values. Each gate driver has a latch stage followed by an output stage. The output stage is coupled to drive a current gate line, and the latch stage is coupled to drive a) a first hold circuit that holds the current gate line at a predetermined voltage, and b) a second hold circuit that holds a previous gate line at a predetermined voltage. Other embodiments are also described and claimed.
Abstract:
A system and device for driving high resolution monitors while reducing artifacts thereon. Utilization of Z-inversion polarity driving techniques to drive pixels in a display reduces power consumption of the display but tends to generate visible horizontal line artifacts caused by capacitances present between the pixels and data lines of the display. By introducing a physical shield between the pixel and data line elements, capacitance therebetween can be reduced, thus eliminating the cause of the horizontal line artifacts. The shield may be a common voltage line (Vcom) of the display.
Abstract:
Displays with touch sensing circuitry integrated into the display pixel stackup are provided. An integrated touch screen can include multi-function circuit elements that can operate as circuitry of the display system to generate an image on the display, and can also form part of a touch sensing system that senses one or more touches on or near the display. The multi-function circuit elements can be, for example, capacitors in display pixels that can be configured to operate as storage capacitors/electrodes, common electrodes, conductive wires/pathways, etc., of the display circuitry in the display system, and that may also be configured to operate as circuit elements of the touch sensing circuitry.