Abstract:
A connector includes contacts each having a contact portion, an elastic portion and a fulcrum portion between the contact portion and a connection portion, and a pressure receiving portion; a housing fixing the contacts; and a slider having urging portions pivotally moved between the connection and pressure receiving portions of the contacts to urging the contact portions against the circuit board, thereby achieving reliable connection and miniaturization of the connector. In an aspect, the housing is formed on the side of a board insertion opening with a recessed portion for conducting the board. In another aspect, the contact includes upper and lower contact portions one above the other arranged alternately staggered so as to be connected to a circuit board having contact portions alternately staggered, so that no defective connection occurs, even if the circuit board is inserted erroneously upside down. In a further aspect, the connector further includes locking members having an engaging portion which engages an anchoring portion of the circuit board to prevent the circuit board from being removed. In one aspect, contacts of two kinds are inserted into the housing from opposite sides, respectively so that these contacts of the two kinds are into contact with the contact portions on respective surfaces of the circuit board. In a further aspect, moreover, a plate-shaped piece is provided in opposition to the contact portions of the contacts to prevent the housing from being deformed.
Abstract:
A system includes a first bus coupler element, a second bus coupler element, and a visual element associated with the second bus coupler element and including a transparent media enabling the second coupler element to be visually aligned with the first coupler element.
Abstract:
The invention relates to surge suppressors. One embodiment provides a surge suppressing device including: a power circuit having an MOV and a thermal fuse in proximity to the MOV; an isolation structure containing the MOV and the thermal fuse; and a plurality of utility outlets in electrical communication with the power circuit. The isolation structure isolates the MOV and thermal fuse from at least a portion of the surge-suppressing device and encapsulates emissions from the MOV during an overvoltage event. Another embodiment provides a surge suppressing device including: a power section having a power circuit; an intermediate section adjacent to the power section; and an outlet section adjacent to the intermediate section such that the intermediate section separates the power section and the outlet section. The outlet section includes a plurality of utility outlets in electrical communication with the power circuit. Further embodiments are described.
Abstract:
In one embodiment, a cable connects a computing device to both an external power source and one or more peripheral devices. The cable may include a docking module including an AC adaptor for connecting to an external AC power source, and a DC-DC charger, coupled to the AC adaptor, for transmitting power to the computing device over a segment of the cable. The docking module may also include one or more connectors adapted to connect to one or more peripheral devices. In another embodiment, a device connects a computing device to an external power source. The device includes a first cable segment and a DC-DC charger suitable for transmitting power to the computing device over the first cable segment. The device includes a second cable segment connecting the DC-DC charger to an AC adaptor suitable for connection to an external power source.
Abstract:
An advanced connector assembly enabled to receive and distribute power signals. In one embodiment, the connector comprises a single port modular jack, and incorporates an insert assembly disposed in the rear portion of the connector housing. The insert assembly includes first and second substrates and a cavity adapted to receive one or more electronic or signal conditioning components. Heat removal features are also utilized within the jack to effectively dissipate heat produced by the electronic or signal conditioning components. The insert assembly is also optionally made removable from the jack housing such that an insert assembly of a different electronics or terminal configuration can be substituted therefor. In this fashion, the connector can be configured to a plurality of different standards (e.g., Gigabit Ethernet, 10/100, etc.). Methods for manufacturing the aforementioned embodiments are also disclosed.
Abstract:
An axial latch actuator includes: a mating portion having a latch for engaging a jack; and a slidable housing that slides along the mating portion and engages the mating portion, wherein when the slidable housing slides in a first direction, the mating portion is in a latched position and when the slidable housing slides in a second direction, the mating portion is in an unlatched position. The housing also includes a locking wedge. The latch in this embodiment includes first and second fingers adjacent to one another that extend over the mating portion and have first ends connected to the mating portion.
Abstract:
The present invention determines and monitors the connection pattern of data ports which are connected by multiconductor cables. An adapter jacket having an external contact is placed over a standardized cable such as an RJ45 cable which connects the data ports. An adapter board having a plurality of socket contacts is placed adjacent a plurality of data ports. An output and input module are coupled to the socket contacts. A micro-processor which is coupled to the output and input module scans the socket contacts to determine the connection pattern of the data ports.
Abstract:
An improved system and method of installing wireless network components, such as data transceivers, into residential and commercial buildings and other structures, by combining said wireless network components with standard power receptacles, switches, and similar devices. A module electrical device combines a low-voltage signaling or communications system device with a power line voltage device in a single housing that can be listed and installed in accordance with current electrical codes. The device can be installed in standard power-line level wall box electrical enclosures. The housing provides a plurality of internal cavities through which power line voltage and low-voltage wiring can be routed. A variety of connecting means can be provided on the front and rear faces of the housing. Housing components may be sized and configured to have common physical mating surface designs so as to allow the predictable assembly of power line level components with low-voltage components to complete construction of a single device internally housing both sets of components.
Abstract:
For use with a communication devise such as a computer or fax machine, a Category cable including a CAT 5, CAT 5E, CAT6, CAT 7, and CAT 8. CAT refers to Category as defined in “United States Code of Federal Regulations” as are the registered jacks. A telephone cable is spliced to the Category cable. The end of the CAT cable and the end of the telephone cable have Registered Jacks attached thereto. The Registered Jacks are designated RJ and include RJ-11, RJ-12, RJ-25, and RJ-45. When the Category cable is connected to a computer modem or fax machine these devices are speeded up provided the Registered Jacks as connected to a phone jack
Abstract:
A small form-factor transceiver module performs protocol translation, in addition to the conventional electrical and/or optical transmission media conversion. Such protocol conversion may enable transport of traffic from limited-range primary networks over long-range secondary networks, such as extension of Ethernet networks over low-rate TDM links. Additionally, such protocol conversion may enable interworking between different networks of differing technologies, such as transport of ATM traffic over Ethernet networks. The transceiver module may be a Small Form Factor transceiver (SFF), Small Form Factor pluggable module (SFP), Gigabit Interface Converter (GBIC) or any similar small form-factor module consisting of a housing, internal electronic circuitry and optionally optical components, and associated electrical or optical connectors. The transceiver module performs protocol translation by means of an integral protocol translation unit that performs standards-based or proprietary conversion between network protocols.