Abstract:
The present invention provides a mechanism for combining programming signals to provide an output signal, the properties of which depend only on selected properties of the programming signals. An embodiment of the invention includes first and second edge-to-pulse converters. The first edge-to-pulse converter generates an intermediate signal having a width determined by received initiation and termination signals. The second edge-to-pulse converter generates an output signal, responsive to the intermediate signal and the termination signal. The output signal has a width determined by a first edge of the initiation signal and a first edge of the termination signal.
Abstract:
A system includes a first bus coupler element, a second bus coupler element, and a visual element associated with the second bus coupler element and including a transparent media enabling the second coupler element to be visually aligned with the first coupler element.
Abstract:
A controller sends signals to an electromagnetic coupler associated with a bus. The signals are arranged to set a coupling strength of the coupler.
Abstract:
In some embodiments, a first conducting line, having a characteristic impedance, connects to a digital device while a second conducting line, also having a characteristic impedance, connects to another digital device. An impedance pathway connects the two conducting lines and has an impedance of at least one-third of the first conducting line's characteristic impedance and of at least one-third of the second conducting line's characteristic impedances. Other embodiments are claimed.
Abstract:
Electromagnetic coupling locations are provided along a bus. Devices can be respectively coupled at the locations for communication on the bus. Electromagnetic coupling strengths associated with at least some coupling locations are caused to have different, selected values.
Abstract:
The present invention provides a mechanism for supporting high digital bandwidth in a multi-drop bus system. A first device of the system is electrically coupled to a bus. Multiple receiving devices are coupled to the bus through associated electromagnetic couplers having coupling coefficients in a specified range. The geometries of the electromagnetic couplers are selected to reduce variations in the coupling coefficients with changes in the relative positions of the coupler components.
Abstract:
An apparatus includes a clock generator configured to generate a series of new clock pulses, the clock generator having an input port for receiving input clock pulses, an output port for delivering the new clock pulses to a target circuit that uses the new clock pulses to determine at least a start time or a stop time of a signal generated by the target circuit, and, a pulse delay for governing the width of the new clock pulses, the delay including circuits that produces longer delays for faster corners.
Abstract:
A system includes a first bus coupler element, a second bus coupler element, and a visual element associated with the second bus coupler element and including a transparent media enabling the second coupler element to be visually aligned with the first coupler element.
Abstract:
A controller sends signals to an electromagnetic coupler associated with a bus. The signals are arranged to set a coupling strength of the coupler.
Abstract:
A controller sends signals to an electromagnetic coupler associated with a bus. The signals are arranged to set a coupling strength of the coupler.