Abstract:
A mounting plate assembly for a notification appliance. For example, a mounting plate is designed with at least one aperture for receiving a plurality of leads, e.g., from a backbox. In turn, these leads can be received by a plurality of contacts that are deployed on the mounting plate. In one embodiment, at least two of these contacts are in physical contact with each other at a juncture, thereby providing a connectivity between these two contacts. However, the physical contact at the juncture is non-resetable, i.e., if a force is applied to the juncture, then the connectivity is severed and the physical contact between the two contacts cannot be easily re-establish even if the force is removed.
Abstract:
An LED worklight having a center core and a first panel and a second panel coupled to the center core. The first panel includes a first array of LEDs mounted to a first circuit board disposed within a first opening formed within the first panel and a first lens disposed over the first array of LEDs. The second panel includes features similar to the first panel. The second panel is rotatable around the center core from a 0 degree closed orientation to about a 360 degree orientation, and is positionable at any intermediate angle therebetween. The LED worklight includes a retractable hook for mounting to an elevated object. The LED worklight also includes at least one magnet to mount the LED worklight to vertical/vertically angling surfaces. The array of LEDs mounted to the first panel and the second panel can be controlled independently of one another.
Abstract:
The reflector assembly maintains the integrity and shape of a multi-member reflector for a recessed luminaire. The reflector assembly includes a reflector having multiple members. The members are arranged in a geometric form, such as a rectangle. A frame is disposed around the reflector. The frame includes at least one integral member manipulated around a joint formed between adjacent members of the reflector. For example, the integral member can include a clamp or tab. The frame and the integral member secure the positions of the members of the reflector relative to one another and prevent light from leaking through joints between the members. One or more connectors are coupled to the frame for connecting the reflector assembly to a lighting fixture. For example, each connector can include a torsion spring coupled to a lever configured to engage a corresponding catch of a collar on the lighting fixture.
Abstract:
A fire stop clamp is presented. The fire stop clamp includes a support clamp and a fire stop disc. The support clamp supports a pipe by preventing movement of a pipe towards a structural member. The fire stop disc seals an opening associated with a pipe penetration. The sealed opening inhibits the passage of fire and smoke through the opening. The fire stop clamp includes an expansion element that pushes the fire stop disc towards the structural member. If a pipe moves away from the structural member, the expansion element will allow the fire stop disc to retain a seal over the opening.
Abstract:
Interactive, computer implemented systems and methods for analyzing issues raised by promulgated industry standards for complex electrical product and system design. Data and information related to the electrical system and to the promulgated standards of interest are archived in the system databases, and with an intuitive menu driven user interface and graphic displays, interested users may rather quickly evaluate complex product designs for certification with desired promulgated standards applicable to the product and system design.
Abstract:
A cable management system for routing cable with respect to electronic equipment. This system has a variety of improvements providing greater flexibility in routing cable to and from the equipment.
Abstract:
Insulated vacuum switchgear and active switchgear elements therefor are provided with a composite overwrap for mechanically isolating a vacuum insulator from axial loads in use without reinforcing or insulating encapsulations. A dielectric buffer layer is provided to fill voids or discontinuities in the overwrap.
Abstract:
An apparatus comprises a light source, preferably an LED, a reflector, a light-conducting element mounted on the light source for directing light from the light source to an end of the light-conducting element, and a lens mounted on the end of the light-conducting element for directing light into a central beam. Light from the light source is directed to the reflector into a peripheral beam. The central and peripheral beams comprise substantially all of the light generated by the light source. The lens is in effect mounted on a pedestal above the LED. The pedestal transmits all the light rays in the central solid angle to the lens without loss.
Abstract:
A hanger bar assembly for a recessed luminaire is disclosed. The hanger bar assembly includes a first hanger bar member having a first attachment structure disposed on an end thereof, and a second hanger bar member having a second attachment structure disposed on an end thereof, the second hanger bar member being adjacent to the first hanger bar member. The first and the second attachment structures each include a first wall having a first fastener aperture and a second wall having a second fastener aperture, the first and second fastener apertures being formed about a common central longitudinal axis.
Abstract:
A loadbreak connector system and methods for visible break include first and second mating connector assemblies configured to make or break an electrical connection under energized circuit conditions, the first and second mating connectors selectively positionable relative to one another. One of the first and second mating connectors includes an arc follower, and the other of the first and second mating connectors includes an arc interrupter. The arc interrupter is configured to receive the arc follower, and the first and second meting connectors are positionable in an disconnected position wherein the arc follower remains engaged to and is located within the arc interrupter. Arc energy is distributed among multiple locations to reduce arc intensity.