摘要:
The fuel assembly includes at least one fuel rod and an outer channel with four sidewalls surrounding the fuel rod, the outer channel having a configuration based on a position of the fuel assembly within a core of the nuclear reactor, wherein at least a first select sidewall, of the four sidewalls of the outer channel, is a reinforced sidewall, the remaining sidewalls of the outer channel, other than the at least a first select sidewall, are non-reinforced sidewalls, the at least a first select sidewall being in a controlled location that faces and is directly adjacent to a control blade that is to be utilized in the nuclear reactor, wherein an entirety of the reinforced sidewall as a whole is at least one of thicker and made from a material that is more resistant to radiation-induced deformation as compared to an entirety of the non-reinforced sidewalls.
摘要:
Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
摘要:
Nuclear fuel spacers include a deflection-limited elastic rod contact. Spacers may additionally include a rigid contact without elastic functionality. A degree of deflection may be chosen based on plastic deformation threshold, maximum fuel rod movement, anticipated transverse loads related to fuel assembly, inspection, handling, transportation, operation, accidents, and/or any other operating characteristic. Spacers include deflection-limited elastic contacts and/or rigid contacts in several arrangements within the spacer and/or on a single fuel rod. Spacers are compatible with a simple fabrication method that forms rigid, deflection-limiting, and elastic components from a single substrate. Nuclear fuel spacers are useable with several fuel assembly types.
摘要:
Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components usable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
摘要:
In a method of designing a nuclear reactor core for uprated power operations, a set of constraints are inputted to be satisfied for uprated power operations, and a test reactor core design is generated based on the constraints. One or more automated tools may be selected from a set of automated tools to evaluate the test core design against the constraints. The selected tool may then be operated. Operation of the selected automated tool includes simulating reactor operation with the test core design, based on the constraints, to produce a plurality of outputs, comparing the outputs against the constraints, and providing data indicating constraints that were violated by the test core design during the simulation, based on the comparison. One or more of the automated tools are iterated until a test core design meets all constraints for uprated power operations, thereby representing an acceptable power uprate core design.
摘要:
In a computer-implemented method of designing a nuclear reactor of a given reactor plant, an initial, test reactor core design is generated for the given plant based on a plurality of limits input by a user. The limits include a plurality of transient licensing constraints to be satisfied for operating the given plant. The method includes selecting, from a set of automated tools, one or more automated tools to evaluate the test core design, and operating one of more of selected automated tools to output data for display to the user. The displayed data is related to a core design that satisfies the limits inclusive of the transient licensing constraints.
摘要:
A debris exclusion and retention device traps and retains foreign material within the lower tie plate of the fuel assembly utilizing the existing flow paths within the lower tie plate, and without redirecting coolant flow. Flow through the inlet nozzle of the lower tie plate into an enlarged lower tie plate housing creates strong jet impingement against the center of the lower tie plate grid or debris filter, if present, which has a tendency to push debris to the periphery of the lower tie plate. Low flow zones around the periphery of the lower tie plate allow debris to fall back toward the inlet nozzle. The retention device traps and retains debris in these low flow zones without impacting existing flow patterns in the lower tie plate. Thus, the retention device has minimal or no impact on lower tie plate pressure drop.
摘要:
Example embodiments are directed to fuel assembly components and nuclear fuel bundles including the fuel assembly components. Example embodiments of a fuel assembly component may include a cylindrical device having first and second ends and a mounting assembly on the first end of the cylindrical device configured to attach to and detach from a partial length fuel rod. Example embodiments of a nuclear fuel bundle may include an upper tie plate, a lower tie plate, at least one full-length fuel rod, at least one partial length fuel rod, and a fuel assembly component.
摘要:
A reactor fuel bundle includes both full-length fuel rods and part-length fuel rods. The part-length rods are clumped in two groups—a first rod group surrounds one or more water passages which are generally centrally disposed in a channel of the fuel bundle, and a second rod group is distributed about an inner perimeter wall of the channel.
摘要:
Example embodiments are directed to upper tie plates for debris mitigation and fuel bundles that use the upper tie plates. Example embodiment tie plates may include a plurality of debris capture elements that overlap each other so as to create debris traps for particulate debris that would fall onto the fuel bundle. Example embodiment fuel bundles may use the upper tie plates for debris mitigation.