Abstract:
A device for determining a concentration of at least one gas in a sample gas stream includes an analysis chamber, a detector, and a connecting channel. The analysis chamber is configured to have the sample gas stream and a reaction gas stream be introduced therein. The sample gas stream and the reaction gas stream are mixed to a gas mixture which reacts so as to emit an optical radiation. The detector is configured to measure the optical radiation. The connecting channel is configured to connect the analysis chamber to the detector. The connecting channel is configured as a light conductor extending from the analysis chamber to the detector.
Abstract:
A control cabinet for an exhaust gas measuring system includes a cabinet body with a component having an inlet and an outlet arranged therein. The outlet is connected via a first connection element to an outlet tube, and the inlet is connected via a second connection element to an inlet tube. The first or second connection element is selectively mounted in a first connection position or in a second connection position so that the outlet tube connecting to the first connection element or the inlet tube connecting to the second connection element is aligned horizontally in the first connection position and vertically in the second connection position. The first connection element or the second connection element are adapted to be mounted in the first connection position and in the second connection position via a 180° rotation in the outlet connection plane.
Abstract:
A device for determining a concentration of at least one gas in a sample gas flow by infrared absorption spectroscopy. The device includes an infrared radiation source which emits a radiation which is conducted through an analysis cell, a feed line, the sample gas flow which is conducted into and out of the analysis cell via the feed line, a detector which measures an absorption spectrum arising in the analysis cell, a suction jet pump which includes a propellant gas connection, and a propellant gas line which extends to the propellant gas connection of the suction jet pump. The suction jet pump is arranged downstream of the analysis cell and feeds the sample gas flow through the analysis cell via the feed line. The propellant gas line includes a regulating valve which regulates a propellant pressure in the propellant gas line.
Abstract:
A system for taking exhaust gas samples from internal combustion engines includes an exhaust gas duct comprising an outflow cross section and an exhaust gas inlet. The exhaust gas duct communicates with an exhaust gas source via the exhaust gas inlet. An air duct takes in ambient air via a filter. The outflow cross section is concentric in the air duct. A mixing zone is arranged downstream of the outflow cross section. A dilution tunnel has an exhaust gas/air mixture flow therethrough. An annular orifice is arranged downstream of the outflow cross section in the dilution tunnel. A flow deflection device is arranged upstream of the annular orifice and downstream of the outflow cross section. The flow deflection device deflects the exhaust gas/air mixture so that it departs from a center axis of the dilution tunnel immediately downstream of the flow deflection device in an axially symmetrical manner.
Abstract:
A device for determining a concentration of at least one gas in a sample gas flow by infrared absorption spectroscopy. The device includes an infrared radiation source which emits a radiation which is conducted through an analysis cell, a feed line, the sample gas flow which is conducted into and out of the analysis cell via the feed line, a detector which measures an absorption spectrum arising in the analysis cell, a suction jet pump which includes a propellant gas connection, and a propellant gas line which extends to the propellant gas connection of the suction jet pump. The suction jet pump is arranged downstream of the analysis cell and feeds the sample gas flow through the analysis cell via the feed line. The propellant gas line includes a regulating valve which regulates a propellant pressure in the propellant gas line.
Abstract:
A device for determining a concentration of at least one gas in a sample gas flow by infrared absorption spectroscopy. The device includes a gas cell which includes a thermal insulation, a chamber, a heating source arranged within the thermal insulation which heats the sample gas flow to a desired temperature, and a sample gas duct having an outlet. The sample gas duct is heated by the heating source upstream of the outlet. An infrared radiation source emits a radiation which is conducted through the chamber of the gas cell. The sample gas flow is conducted into the chamber and into the radiation. A detector has the radiation exiting the chamber conducted thereto to determine an absorption spectrum.
Abstract:
A device for determining a concentration of at least one gas in a sample gas stream includes an analysis chamber, a detector, and a connecting channel. The analysis chamber is configured to have the sample gas stream and a reaction gas stream be introduced therein. The sample gas stream and the reaction gas stream are mixed to a gas mixture which reacts so as to emit an optical radiation. The detector is configured to measure the optical radiation. The connecting channel is configured to connect the analysis chamber to the detector. The connecting channel is configured as a light conductor extending from the analysis chamber to the detector.