Abstract:
A method and apparatus for executing instructions in a processor are provided. In one embodiment of the invention, the method includes receiving a plurality of instructions. The plurality of instructions includes first instructions in a first thread and second instructions in a second thread. The method further includes forming a common issue group including an instruction of a first instruction type and an instruction of a second instruction type. The method also includes issuing the common issue group to a first execution unit and a second execution unit. The instruction of the first instruction type is issued to the first execution unit and the instruction of the second instruction type is issued to the second execution unit.
Abstract:
A design structure embodied in a machine readable storage medium for designing, manufacturing, and/or testing a design for image processing, and more specifically to vector units for supporting image processing is provided. A combined vector/scalar unit is provided wherein one or more processing lanes of the vector unit are used for performing scalar operations. An integrated register file is also provided for storing vector and scalar data. Therefore, the transfer of data to memory to exchange data between independent vector and scalar units is obviated and a significant amount of chip area is saved.
Abstract:
A method, computer-readable medium, and an apparatus for implementing a floating point weighted average function. The method includes receiving an input containing 2N input values, 2N weights, and an opcode, where N is a positive integer number and each of the input values corresponds to one of the weights. Furthermore, the method also includes using existing dot product circuit function to generate 2N addends by multiplying each of the input values with the corresponding weight. In addition, the method includes generating a sum value by adding the 2N addends, where the sum value includes an exponent value, and generating the weighted average value based on the sum value by decreasing the exponent value by N. In this fashion, the same circuit area may be used to carry out both dot product and weighted average calculations, leading to greater circuit area savings and performance advantages.
Abstract:
Embodiments of the invention provide logic within the store data path between a processor and a memory array. The logic may be configured to misalign vector data as it is stored to memory. By misaligning vector data as it is stored to memory, memory bandwidth may be maximized while processing bandwidth required to store vector data misaligned is minimized. Furthermore, embodiments of the invention provide logic within the load data path which allows vector data which is stored misaligned to be aligned as it is loaded into a vector register. By aligning misaligned vector data as it is loaded into a vector register, memory bandwidth may be maximized while processing bandwidth required to align misaligned vector data may be minimized.
Abstract:
The present invention is generally related to integrated circuit devices, and more particularly, to methods, systems and design structures for the field of image processing, and more specifically to vector units for supporting image processing. A dual vector unit implementation is described wherein two vector units are configured receive data from a common register file. The vector units may independently and simultaneously process instructions. Furthermore, the vector units may be adapted to perform scalar operations thereby integrating the vector and scalar processing. The vector units may also be configured to share resources to perform an operation, for example, a cross product operation.
Abstract:
The present invention is generally related to integrated circuit devices, and more particularly, to methods, systems and design structures for the field of image processing, and more specifically to vector units for supporting image processing. A dual vector unit implementation is described wherein two vector units are configured receive data from a common register file. The vector units may independently and simultaneously process instructions. Furthermore, the vector units may be adapted to perform scalar operations thereby integrating the vector and scalar processing. The vector units may also be configured to share resources to perform an operation, for example, a cross product operation.
Abstract:
A logic arrangement and method to support implied storage operation decode uses redundant target address detection, whereby target addresses of previous instructions are compared with the target address of the current instruction, and if equal, and the target addresses of previous instructions are not used as sources, the current instruction is decoded as a store instruction. This allows a redundant operation in an instruction set architecture to be redefined as a store instruction, freeing up opcodes normally used for store instructions to be used for other instructions.
Abstract:
A circuit arrangement and method utilize texture data prefetching to prefetch texture data used by an anisotropic filtering algorithm. In particular, stride-based prefetching may be used to prefetch texture data for use in anisotropic filtering, where the value of the stride, or difference between successive accesses, is based upon a distance in a memory address space between sample points taken along the line of anisotropy used in an anisotropic filtering algorithm.
Abstract:
Embodiments of the invention are generally related to image processing, and more specifically to vector units for supporting image processing. A combined vector/scalar unit is provided wherein one or more processing lanes of the vector unit are used for performing scalar operations. An integrated register file is also provided for storing vector and scalar data. Therefore, the transfer of data to memory to exchange data between independent vector and scalar units is obviated and a significant amount of chip area is saved.
Abstract:
Embodiments of the invention provide logic within the store data path between a processor and a memory array. The logic may be configured to misalign vector data as it is stored to memory. By misaligning vector data as it is stored to memory, memory bandwidth may be maximized while processing bandwidth required to store vector data misaligned is minimized. Furthermore, embodiments of the invention provide logic within the load data path which allows vector data which is stored misaligned to be aligned as it is loaded into a vector register. By aligning misaligned vector data as it is loaded into a vector register, memory bandwidth may be maximized while processing bandwidth required to align misaligned vector data may be minimized.