Abstract:
A four color liquid crystal display (LCD) including red, green, blue, and white pixels is provided. The LCD also includes a plurality of gate lines for transmitting gate signals to the pixels and a plurality of data lines for transmitting data signals to the pixels. The LCD further includes a gate driver supplying the gate signals to the gate lines, a data driver supplying the data voltages to the data lines, and an image signal modifier. The image signal modifier includes a data converter converting three-color image signals into four-color image signals, a data optimizer optimizing the four-color image signals from the data converter, a data output unit supplying the optimized image signals to the data driver in synchronization with a clock, and a clock generator generating the clock. The data driver operates in synchronization with the clock.
Abstract:
A display device includes a plurality of gate lines transmitting gate signals wherein each gate signal has a gate-on voltage and a gate-off voltage, a plurality of data lines intersecting the gate lines and transmitting data voltages, a plurality of storage electrode lines extending in parallel to the gate lines and transmitting storage signals, a plurality of pixels arranged in a matrix wherein each pixel includes a switching element connected to a gate line and a data line, a liquid crystal capacitor connected to the switching element and a common voltage, a storage capacitor connected to the switching element and a storage electrode line, and a plurality of storage signal generators generating the storage signals based on the gate signals. The storage signal applied to each pixel has a changed voltage level immediately after the charging the data voltage into the liquid crystal capacitor and the storage capacitor is completed.
Abstract:
A thin film transistor array panel is provided, which includes: a gate wire formed on an insulating substrate; a data wire formed on the insulating substrate, insulated from the gate wire, and intersecting the gate wire; a storage electrode wire formed on the insulating substrate, insulated from the data wire, and intersecting the data wire; a plurality of pixel electrodes provided on the respective pixel areas defined by the intersections of the gate wire and the data wire, each pixel electrode having a cutout; a plurality of direction control electrodes provided on the respective pixel areas defined by the intersections of the gate wire and the data wire; a plurality of first thin film transistors connected to the gate wire, the data wire, and the pixel electrodes; and a plurality of second thin film transistors connected to the gate wire, the storage electrode wire, and the direction control electrodes.
Abstract:
A thin film transistor array panel is provided, which includes: an insulating substrate (110); a plurality of control lines (121) provided on the substrate and including first and second control lines; a plurality of data lines (171) provided on the substrate and including first and second data lines; a pixel electrode (190) provided on the substrate and having a cutout (191); a field control electrode (178) provided on the substrate and overlapping the cutout; a first switching element for applying a first signal from the first data line to the pixel electrode in response to a first control signal from the first control line; and a second switching element (2) for controlling a second signal to be applied to the field control electrode (178).
Abstract:
A liquid crystal display is provided, which includes a plurality of pixels including first and second thin film transistors, and a pixel electrode connected to the first and second thin film transistors, a first gate line transmitting a first gate signal and connected to the first thin film transistor, a second gate line transmitting a second gate signal and connected to the second thin film transistor, and a data line transmitting a data signal and connected to the first thin film transistor. The second thin film transistor receives a uniform voltage and transmits the uniform voltage to the pixel electrode according to the second gate signal.
Abstract:
An LCD includes a plurality of pixel rows including a plurality of pixels in a matrix-like arrangement, each of the pixel rows having a first switching element, a second switching element, and a pixel electrode coupled with the first switching element and the second switching element, a plurality of gate lines coupled with the first switching elements to transmit gate-on voltages thereto, and a plurality of data lines coupled with the first switching element and the second switching element to transmit data voltages. The first switching element and the second switching element at each of the respective pixels are coupled with data lines that are different from each other, and the second switching elements are in a turned-off state.
Abstract:
A thin film transistor array panel is provided, which includes: a gate wire formed on an insulating substrate; a data wire formed on the insulating substrate, insulated from the gate wire, and intersecting the gate wire; a storage electrode wire formed on the insulating substrate, insulated from the data wire, and intersecting the data wire; a plurality of pixel electrodes provided on the respective pixel areas defined by the intersections of the gate wire and the data wire, each pixel electrode having a cutout; a plurality of direction control electrodes provided on the respective pixel areas defined by the intersections of the gate wire and the data wire; a plurality of first thin film transistors connected to the gate wire, the data wire, and the pixel electrodes; and a plurality of second thin film transistors connected to the gate wire, the storage electrode wire, and the direction control electrodes.
Abstract:
Disclosed is an LCD and driving method thereof. The present invention comprises a data gray signal modifier for receiving gray signals from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames; a data driver for changing the modification gray signals into corresponding data voltages and outputting image signals; a gate driver for sequentially supplying scanning signals; and an LCD panel comprising a plurality of gate lines for transmitting the scanning signals; a plurality of data lines, being insulated from the gate lines and crossing them, for transmitting the image signals; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines.
Abstract:
A display device includes a display panel, a gate driving circuit, a data driving circuit, and a storage driving circuit. The storage driving circuit includes a plurality of stages to apply a plurality of storage voltages, which are inverted in every frame, to the storage lines, respectively. A kth stage of the stages includes a counter charging part, a boosting part and a holding part. The counter charging part applies a first driving voltage to a kth storage line based on a kth gate signal. The boosting part applies a second driving voltage to the kth storage line based on a (k+2)th gate signal. The holding part applies a storage voltage to the kth storage line based on a (k+1)th gate signal during one frame. The level of the storage voltage corresponds to the second driving voltage.
Abstract:
An organic light emitting display device includes: a display unit including pixels coupled to scan lines and data lines; one or more control lines coupled to the pixels; a control line driver for supplying control signals to the pixels through the control lines; a first power driver for applying a first power having a low voltage level or a high voltage level to the pixels; and a second power driver for applying a second power having a low voltage level or a high voltage level to the pixels, in which each of the pixels includes: an organic light emitting diode (OLED); a driving transistor for controlling an amount of current supplied to the OLED; and an initializing transistor coupled to a gate electrode of the driving transistor and for supplying a reset voltage to the gate electrode of the driving transistor.