Abstract:
Ion-exchange materials comprising a polymeric backbone and a plurality of pendent styrenic or fluorinated styrenic macromonomers covalently bonded thereto, wherein the plurality of pendent styrenic or fluorinated styrenic macromonomers comprise a uniform number of styrenic or fluorinated styrenic monomer repeat units, and wherein predominantly all of the styrenic or fluorinated styrenic monomer repeat units have at least one charged group. Processes for making such materials, as well as products related thereto, are also disclosed. In a representative embodiment, the ion-exchange material is utilized as a proton-exchange membrane (PEM) for use in a PEM fuel cell.
Abstract:
A purge system for fuel cell stack includes a purge valve to regulate exhaust from the fuel cell stack in response control signals from a controller in response to a voltage across a purge cell portion of a fuel cell stack. The purge valve is opened when the voltage across the purge cell portion falls below a defined percentage of a threshold voltage. The threshold voltage can be equal to an average cell voltage of some or all of the fuel cells of the fuel cell stack. The purge may include one or more successive openings of the purge valve of controlled purge durations.
Abstract:
The activity of catalysts used in promoting the oxidation of certain oxidizable species in fluids can be enhanced via electrochemical methods, e.g., NEMCA. In particular, the activity of catalysts used in the selective oxidation of carbon monoxide can be enhanced. A purification system that exploits this effect is useful in purifying reformate supplied as fuel to a solid polymer electrolyte fuel cell stack. The purification system comprises an electrolytic cell with fluid diffusion electrodes. The activity of catalyst incorporated in the cell anode is enhanced.
Abstract:
In an improved electrochemical fuel cell assembly, a reactant flow path extends substantially linearly across the electrochemically active area of an electrode. The electrode has an in-plane nonuniform structure in its electrochemically active area as the active area is traversed in the direction of the substantially linear reactant flow path. Embodiments in which the structure of the fuel cell electrode varies substantially symmetrically along the reactant flow path are particularly preferred in fuel cells in which the flow direction of a reactant is periodically reversed.
Abstract:
A method is provided for operating a fuel cell stack with improved performance recovery from sub-saturated conditions, the method comprising setting an alert for the performance recovery of the fuel cell stack, performing at least one oxidant starvation by supplying oxidant at a stoichiometric ratio below 1 to the fuel cell stack in at least one pulse for a preset amount of time and at low current while the fuel cell stack does not generate power. The fuel cell system with an improved performance recovery comprises a shorting circuit which is connected to the fuel cell stack at predetermined times (startup, shutdown or standby mode) and an air compressor powered by a DC-DC converter which supplies a predetermined number of oxidant pulses of a predetermined duration to the fuel cell stack.
Abstract:
A flow field plate comprises a first flow field surface, an opposing second surface, and at least one flow channel and at least one landing formed in the first flow field surface, wherein the landing comprises a main surface, at least a first protrusion and a second protrusion extending from the main surface, each of the first and the second protrusions being placed at an edge of the main surface of the landing. The main surface of the landing has preferably a curved shape and the protrusions extending from the main surface have preferably a rounded shape.
Abstract:
In solid polymer fuel cells employing framed membrane electrode assemblies, a conventional anode compliant seal is employed in combination with a cathode non-compliant seal to provide for a thinner fuel cell design, particularly in the context of a fuel cell stack. This approach is particularly suitable for fuel cells operating at low pressure.
Abstract:
Fuel cell systems (10) and related methods for limiting fuel cell slippage are provided. A stacked plurality of adjacent fuel cells (14) collectively forming a fuel cell stack (12). The fuel cells each include a pair of first and second plates (30, 30′, 30″; 32, 32′, 32″) at respective opposite ends thereof. A first fuel cell has a first plate (30, 30′, 30″) in engagement with a second plate (32, 32′, 32″) of a second fuel cell adjacent to the first fuel cell. A slip mitigation arrangement (50, 50′, 50″) between at least one of the pairs of the first and second fuel cells comprises first and second seats (62, 62′, 62″; 64, 64′, 64″) recessed in the engagement surfaces of the first and second conductive plates respectively, and a key member (60, 60′, 60″) having opposite ends seated in the first and the second recessed seats such that relative movement between the first and the second fuel cells is limited.
Abstract:
The present invention is to provide a method for producing a catalyst for fuel cells with excellent durability, and a fuel cell comprising a catalyst for fuel cells produced by the production method. Disclosed is a method for producing a catalyst for fuel cells, the catalyst comprising fine catalyst particles, each of which comprises a palladium-containing core particle and a platinum-containing outermost layer covering the core particle, and carbon supports on which the fine catalyst particles are supported, wherein the method comprises the steps of: preparing carbon supports on which palladium-containing particles are supported; fining the carbon supports; and covering the palladium-containing particles with a platinum-containing outermost layer after the fining step.
Abstract:
A method of generating electrical power includes flowing hydrogen across an anode, splitting the hydrogen into protons and electrons using a catalyst attached to the anode, directing the electrons to a circuit to produce electrical power, flowing oxygen across a cathode, splitting the oxygen molecules into oxygen atoms using a cathode catalyst, passing the protons through an electrolyte to the cathode, and combining the protons with oxygen to form water. The cathode catalyst includes a plurality of nanoparticles having terraces formed of platinum, and corner regions and edge regions formed of a second metal.