Abstract:
In an energy storage device comprising a series network of n storage elements C1, . . . Cn, able to provide a continuous voltage across its terminals, a system for equilibrating the elements is envisaged comprising a plurality of charge transfer modules Mi,j, each module Mi,j ensuring a bidirectional transfer of charge linear to first order between two storage elements Ci and Cj of the said network. Each energy storage element is connected to p modules, p≦n−1, each of the p modules pairing the said element with another element of the network. The time required for reequilibrating is thus reduced.
Abstract:
The invention relates to a unitary magnetic coupler including a first inductor (Lp) consisting of a first winding of phase φ and having a number N of turns between the two ends of the first winding and, magnetically coupled to the first inductor (Lp), a second inductor (Ls) consisting of a second winding of the same phase φ and having the same number N of turns between the two ends of the second winding, where the ends of the first and second windings of the unitary magnetic coupler are interconnected using links consisting of capacitors (C1, C2) of equal value.
Abstract:
A device for transferring power by an electrical energy transformer, and in particular by a magnetic coupler, including on a primary side a primary winding in series with an alternating source and on a secondary side a secondary winding, a rectifier bridge, and a load. The rectifier bridge includes two diodes arranged in series with the secondary winding and two MOS transistors also in series with the secondary winding. The load is connected on the one hand to a point common to the two diodes and on the other hand to a point common to the two MOS transistors. A mechanism is provided for switching the MOS transistors in such a way that they are simultaneously in the ON state for a predetermined duration. Such a device may find application to cases of weak coupling between a primary side and a secondary side.
Abstract:
A bidirectional current sensor including a transformer having a primary winding arranged in a circuit likely to be run through by a current to be measured, a secondary winding, an impedance for demagnetizing the transformer, and a measuring resistor connected to the secondary winding via a switch controlled to be on when a current is likely to run through the primary winding. It applies in particular to the detection of currents in bidirectional voltage converters.
Abstract:
This regulated power supply system with high input voltage dynamics, of the type having a shared inductance buck/boost transformer and having at least two controllable semiconductor switching members, one associated with the buck function of the transformer and the other with the boost function of the transformer, is characterized in that one of the controllable semiconductor switching members is driven by control means as a function of the system's input voltage, and the other is driven continuously by enslavement means on the output voltage.
Abstract:
In an energy storage device comprising a series network of n storage elements C1, . . . Cn, able to provide a continuous voltage across its terminals, a system for equilibrating the elements is envisaged comprising a plurality of charge transfer modules Mi,j, each module Mi,j ensuring a bidirectional transfer of charge linear to first order between two storage elements Ci and Cj of the said network. Each energy storage element is connected to p modules, p≦n−1, each of the p modules pairing the said element with another element of the network. The time required for reequilibrating is thus reduced.
Abstract:
This AC/DC converter is an isolated converter with switch-mode current regulation by means of a controlled switch (5). The controlled switch (5) is protected by a current limiting device (9, 7) obeying a peak current setpoint proportional to the instantaneous voltage from the power supply source (Vin). This allows the quality of the absorbed current to be improved and the risks of interference from the switch-mode power supply to be limited while at the same time satisfying the new demands on avionics power networks.
Abstract:
A high-output ratio DC DC converter supplies at least two regulated output voltages, a positive voltage Vs+ and a negative voltage Vs− from a direct current voltage Vin applied at the input, by means of two voltage boost structures with pairs of switches SBp1, SHp1, and groups of input capacitors Gin1 and output capacitors Gout1, controlled by an inductive stage with inductance Lin and controlled switch M, a level translator circuit with capacitor Ct and direct diode Dt being provided between the said inductive stage and the structure supplying the negative output voltage.
Abstract:
The invention relates to a device for measuring current in an inductor and being connected in parallel with said inductor. The device includes a network in parallel with the inductor and connected to the terminals A and B comprising a resistor R2 in series with a resistor R1 in parallel with a capacitor C1; a voltage offset circuit having a DC voltage generator E connected in parallel with an offset resistor (Roffset) in series with two parallel resistors R3 and R4, the positive pole of the voltage source being connected to terminal B of the inductor; a temperature compensation circuit comprising a current source controlled as a function of the temperature, one of the two terminals of the current source being connected to the negative pole of the generator E, the other terminal of the current source being connected to different points of the measurement device.
Abstract:
This AC/DC converter is an isolated converter with switch-mode current regulation by means of a controlled switch (5). The controlled switch (5) is protected by a current limiting device (9, 7) obeying a peak current setpoint proportional to the instantaneous voltage from the power supply source (Vin). This allows the quality of the absorbed current to be improved and the risks of interference from the switch-mode power supply to be limited while at the same time satisfying the new demands on avionics power networks.