Abstract:
Systems (100) and methods (400-1000) for providing store intelligence. The methods involve: communicating a First Unique IDentifier (“FUID”) between a beacon of a Proximity System (“PS”) disposed adjacent to an EAS system of a facility and a Mobile Communication Device (“MCD”) possessed by a person; communicating FUID and a Second UID (“SUID”) to an Intelligence System (“IS”), where FUID and SUID collectively comprise a UID of the beacon and a UID of the MCD; capturing a Time Stamped Image (“TSI”) of the person using a camera of the proximity system; communicating TSI to IS for storage; and performing operations at IS to enhance the security/safety of the facility by using FUID to detect an entrance/exit of the person to/from the facility and at least one of SUID and TSI to make a first determination as to an identification of the person.
Abstract:
A tag having a magnetic clamp for use in securing an item in order to prevent the unauthorized removal of the item from, for example, a retail store. The magnetic tag includes an attachment element that secures the item to the tag. A clamp having a locking region secures the attachment element such that the item cannot be separated from the tag. A keyed magnetic element on the clamp includes one or more hard magnets, where each hard magnet has either an outward-facing north or south polarity. By applying a magnetic force to the magnets, the locking region moves away from the attachment element thus allowing the item to be removed from the tag. The arrangement of magnets operates as a “key” and only a detacher unit with an identical magnetic pattern can apply the requisite magnetic force to the magnets to disengage the clamp from the attachment element to allow removal of the tag from the item.
Abstract:
A radio frequency identification, RFID, security system tag is provided. The tag includes an RFID element and a first housing portion. The first housing portion defines an interior and an opening. The interior of the first housing portion includes an inner periphery and a shelf disposed about at least a portion of the inner periphery. The interior of the first housing portion also includes a plurality of protrusions in which the plurality of protrusions extend outwardly from the shelf toward the opening. The RFID element is disposed at least in part on the plurality of protrusions.
Abstract:
A method and system for security tag attachment using a reversible adhesive in which a security tag has an outer surface and an inner volume. The tag includes at least one of an Electronic Article Surveillance (EAS) element and a Radio Frequency Identification (RFID) element disposed within the inner volume. The system also includes a reversible adhesive disposed on at least a portion of the outer surface.
Abstract:
A system, apparatus, and method to combine radio frequency identification and electronic article surveillance receivers into a single device are described wherein a first selection signal is sent to switch a first switch to a first state to connect a receiver to a first antenna in order to detect a first type of security tag in a first operating mode and a second selection signal is sent to switch the first switch to a second state to connect the receiver to a second antenna to detect a second type of security tag in a second operating mode. Other embodiments are described and claimed.
Abstract:
A method to power a radio frequency identification (RFID) reader to increase multi-tag reading capability and increase the reading range of a passive tag without maximizing the continuous transmitted power level is provided. The RFID reader transmits a pulsed interrogation signal until an RFID tag response is received, and then switches to a continuous and pulsed power scheme. The continuous power emitted maintains the power supplied to the RFID tags so the tags will not reset due to loss of power. The pulsed signal permits reading the tags at longer ranges, especially when there is a plurality of tags in the area.
Abstract:
A resonant RF electronic article surveillance marker includes a substrate, a coil formed on the substrate, and a capacitor formed on the substrate. The coil includes a magnetic element which exhibits a GMI effect. Two signals are employed to interrogate the marker—an RF carrier signal and a low-frequency alternating magnetic field. Because of the presence of the GMI element, the marker mixes the low frequency signal with the carrier signal to generate a sideband of the carrier signal. The sideband signal is very unique and can be detected with a high degree of reliability. The marker may also include magnetic control elements which can be magnetized to disable the marker and de-magnetized to reactivate the marker.
Abstract:
A resonant tag for an article surveillance system comprising a voltage dependent capacitance means whose capacitance can be varied with changes in voltage to selectively provide one or more resonant frequencies for the resonant tag.
Abstract:
Binary messages received over a radio channel are subject to fading or noise degradation because of the radio channel. Accordingly, a predetermined binary preamble followed by a synchronizing word are transmitted ahead of the message. In order that the synchronization be correct, the end of the preamble should be determined as accurately as possible. This is achieved by fast and slow detectors which receive the preamble. The fast detector output is applied to a time delay. The slow detector and the time delay outputs are applied to an output circuit which produces an output signal in response to the slow detector and the time delay outputs both being present. The fast and slow detectors and the time delay are arranged so that the output signal is produced at the desired time after the preamble begins, thereby accurately indicating when the synchronizing word is to begin.