Abstract:
A solar cell and method of fabricating the same are provided. The solar cell includes a metal electrode layer, an optical absorption layer, a buffer layer, and a transparent electrode layer. The metal electrode layer is disposed on a substrate. The optical absorption layer is disposed on the metal electrode layer. The buffer layer is disposed on the optical absorption layer and includes an indium gallium nitride (InxGa1-xN). The transparent electrode layer is disposed on the buffer layer.
Abstract translation:提供了一种太阳能电池及其制造方法。 太阳能电池包括金属电极层,光吸收层,缓冲层和透明电极层。 金属电极层设置在基板上。 光吸收层设置在金属电极层上。 缓冲层设置在光吸收层上并包括氮化铟镓(In x Ga 1-x N)。 透明电极层设置在缓冲层上。
Abstract:
Provided is an optical module including a microstrip line, a traveling wave type optical device positioned in the end of the microstrip line, and at least one balanced open stub connected to the microstrip line for the impedance matching at a specific frequency such as 40 GHz and 60 GHz. For the fine tuning, laser trimming can be applied to the stub. A transition region is formed between the optical device and the microstrip line. A termination resistor is formed to face the microstrip line with the optical device therebetween. A bandwidth can be controlled at a specific frequency by adjusting a number of the stubs or a value of the termination resistor.
Abstract:
Disclosed is an electro-absorption optical modulator using a semiconductor device. The optical modulator makes use of a change in light absorption caused by displacement of an absorption curve depending on a bias voltage applied to the device. Here, a level of the light absorption depending on the bias voltage is expressed as a transfer function of output light to the applied bias, and the transfer function has a non-linear profile due to a characteristic of a material. Unlike signal modulation of a digital optical communication system, an analog optical transmission system can be subjected to deterioration in performance, because the non-linear characteristic of the transfer function for the optical modulator generates signal distortion when an electrical signal is converted into an optical signal. The typical optical modulator has an absorption layer constituted of quantum wells having the same width. However, the inventive optical modulator has the absorption layer formed by the combination of quantum wells having a width different form each other, thus having excellent linearity.