Abstract:
A discharge lamp system includes a discharge lamp; a power supply device for providing DC input voltage and current; a converter connected to the discharge lamp and the power supply device for providing power for the discharge lamp; a DC input voltage detecting unit connected to the power supply device for detecting the DC input voltage; a DC input current detecting unit connected to the power supply device for detecting the DC input current; a lamp state detecting unit for detecting a signal responsive to the lamp state; a controller connected to the converter, the DC input voltage detecting unit, the DC input current detecting unit and the lamp state detecting unit for controlling the discharge lamp according to the signal responsive to the lamp state, the DC input voltage and the DC input current. A controlling method for the discharge lamp system is also disclosed herein.
Abstract:
A control method for reducing audio noise is disclosed. The method includes the steps of: providing an input power source; providing a power source converter having a component with a mechanical resonant frequency, coupled to the input terminal or the output terminal of the power source converter; providing an output capacitor and a load connected in parallel therebetween; making the power source converter operate in a burst mode; and controlling the electrical energy transferred from the input terminal to the output terminal of the power source converter during an operating period of every burst cycle, so as to reduce the audio noise of the power source converter.
Abstract:
A transformer capable of suppressing common mode current and a power converter thereof are provided. The transformer comprises a primary winding, a secondary winding, a magnet core and a shielding winding layer. The shielding winding layer has a first shielding winding and a second shielding winding. A voltage jump direction of the first shielding winding is constantly opposite to that of the second shielding winding. The shielding winding layer is coupled to a static terminal coupled with the primary winding or the secondary winding.
Abstract:
The present invention provides a heat sink device, suitable to the heat dissipation of a high-power medium-voltage drive power cell. The device comprises a heat dissipation substrate having a first surface, a second surface and an inner layer between the first surface and the second surface; a heat pipe having an evaporation section and a condensation section. The evaporation section is buried in the inner layer of the heat dissipation substrate, and the condensation section is used to dissipate the heat from the evaporation section to the air. The power elements of the high-power medium-voltage drive power cell are disposed on the first surface and the second surface, respectively.
Abstract:
A multi-phase switching power conversion circuit has at least three phases and includes a plurality of switching circuits, a plurality of transformers, a plurality of output rectifier circuits, a resonant network and a control circuit. The resonant network includes a plurality of symmetrical terminals and a plurality of phase branches, which are connected in a multi-phase symmetrical relationship. Each of the symmetrical terminals is connected to the output side of respective switching circuits. The phase branches are connected to a resonant common terminal such that the phase branches are in a star connection. The resonant common terminal is different from the positive terminal and the first reference terminal of the input voltage source. The control circuit is connected to an output terminal of the multi-phase switching power conversion circuit and a plurality of the control terminals of the plurality of switching circuits. The switching circuits are conducted or shut off according to the output voltage under control of the control circuit, so that the electrical energy of the input voltage source is selectively transmitted to the resonant network.
Abstract:
The present invention provides a three-level ac generating circuit and the control method thereof. The three-level ac generating circuit includes a three-level boosting circuit connected to an input source and including a positive boosting portion and a negative boosting portion; and a three-level inverting circuit connected to the three-level boosting circuit and including a positive inverting portion and a negative inverting portion, wherein while the input source is a relative low voltage, the relatively low voltage is boosted via the three-level boosting circuit, inverted and output via the three-level inverting circuit; while the input source is a relatively high voltage, the relatively high voltage is inverted and output via the three-level inverting circuit and wherein the output of the three-level ac generating circuit is power grid.
Abstract:
A ballast circuit is provided. The ballast circuit comprises a first lamp set, a second lamp set, a detection circuit, and a latch circuit. The first lamp set comprises a first inductor and a plurality of containing areas. The second lamp set comprises a second inductor and at least one containing area. The detection circuit is configured to receive a direct current (DC) voltage and coupled to the containing areas of the first and second lamp sets so that the detection circuit, the first inductor, the second inductor, and a plurality of lamps contained in the containing areas are in a series connection and generate a first signal. The latch circuit is coupled to the detection circuit and configured to selectively start in response to the first signal.
Abstract:
The present invention provides a continuous conductive planar coil structure. The continuous conductive planar coil structure includes a first output terminal, a second output terminal, a coil body and a projection plane parallel to the coil body, wherein a first projection on the projection plane is formed by the first output terminal, a second projection on the projection plane is formed by the second output terminal, and an overlapping portion is between the first projection and the second projection.
Abstract:
A sampling method with adjusting duty ratios is provided and includes the following steps. A first working pulse signal which has a pulse-width duty ratio D in a switching period Ts is provided. A first adjusting period comprising first N successive switching periods of the first working pulse signal is set, wherein N is a natural number larger than 1. A second working pulse signal which has second N successive switching periods with their corresponding pulse-width duty ratio D1, D2, . . . , DN to drive the switch in the converter circuit is provided and the measured signal is generated, wherein the sum of D1, D2, . . . , DN substantially equals to N·D and the second N successive switching periods constitute a second adjusting period.
Abstract:
A rotary structure of a permanent magnet electric machine including a stator and a rotor is provided. The stator has K salient teeth peripherally spaced with equal intervals for forming K winding slots, wherein K is a natural number greater than 1. The rotor has an annular inner surface and has P pairs of permanent magnets peripherally spaced with equal intervals along the inner surface for rotating around the stator, wherein P is a natural number. Each permanent magnet having two sides along a peripheral direction of the rotor includes a pair of inclined surfaces on the two sides, the pair of inclined surfaces is symmetric with respect to a radial plane of the each permanent magnet, and an inclined angle α between the inclined surface and the radial plane is selected from a range of 90(1−1/(4P))