Abstract:
A board mounted integrated electronics package assembly is provided with one or more securing elements to attach a heat dissipating device directly to the package. The securing element(s) is located along a periphery of the package and anchors a base of the heat dissipating device to the package, thereby eliminating employment of a secondary heat dissipating material between the package and the heat dissipating device.
Abstract:
Apparatus and method for making a heat sink assembly. The apparatus includes a first clip configured to be urgingly attached to a heat producing device, the first clip having a first edge, a second edge, a third edge, and a fourth edge. The apparatus further includes a heat sink configured to be attached to the first clip, and a second clip configured to be attached to the first clip, the second clip being sized to accommodate a portion of the heat sink, and the second clip urging the heat sink towards the heat producing device. Methods to make the foregoing apparatus are also described.
Abstract:
An electronics cooling system in accordance with the principles of the present invention includes an electronics cabinet that is thermally connected with the ground in the vicinity of the cabinet. The cabinet may or may not sit directly on the earth, but the thermal connection is made with the earth below, and in the near vicinity of, the cabinet, thereby employing the earth as a heat sink. In an illustrative embodiment, an enclosed cabinet includes a heat pipe that makes thermal contact with the ground in the immediate vicinity of the electronics cabinet. An electronics cabinet in accordance with the principles of the present invention is particularly suited for use in uncontrolled environments, such as may be encountered by remote telecommunications switches and wireless telecommunications equipment, for example.
Abstract:
An arrangement for cooling a heat dissipating circuit element mounted to a first side of a printed circuit board. A heat dissipation member is mounted to the other side of the circuit board and a thermally conductive post secured to the heat dissipation member extends through an aperture through the circuit board and into thermal contact with the circuit element.
Abstract:
A heat sink assembly mount is provided. Generally the invention has a frame clip and a spring clip. The frame clip has one or more inwardly extending tabs and two or more vertically extending side portions. The one or more tabs are sized to fit over and removably couple to a heat producing device. The distance between the two or more vertically extending side portions is sized to hold a base portion of a heat sink and prevent horizontal motion of the heat sink. The spring clip couples to the frame clip and has a spring bias sized to produce a vertical force that presses the heat sink against a heat producing device.
Abstract:
A heat sink assembly mount is provided. Generally the invention has a frame clip and a spring clip. The frame clip has one or more inwardly extending tabs and two or more vertically extending side portions. The one or more tabs are sized to fit over and removably couple to a heat producing device. The distance between the two or more vertically extending side portions is sized to hold a base portion of a heat sink and prevent horizontal motion of the heat sink. The spring clip couples to the frame clip and has a spring bias sized to produce a vertical force that presses the heat sink against a heat producing device.
Abstract:
A heat sink assembly mount is provided. Generally the invention has a frame clip and a spring clip. The frame clip has one or more inwardly extending tabs and two or more vertically extending side portions. The one or more tabs are sized to fit over and removably couple to a heat producing device. The distance between the two or more vertically extending side portions is sized to hold a base portion of a heat sink and prevent horizontal motion of the heat sink. The spring clip couples to the frame clip and has a spring bias sized to produce a vertical force that presses the heat sink against a heat producing device.
Abstract:
A heat exchanger and a method of manufacturing the heat exchanger is disclosed for dissipating heat from a heat generating component. The heat exchanger comprises a thermally conductive base in thermal communication with the component, a plurality of thermally conductive plate fins affixed to the base wherein the plate fins define a fin field and channels, and fluid control for controlling the fluid flow within the fin field. The individual fins of the heat exchanger comprise an arc shape with diametrically opposed legs extending vertically downward from each end of the fins. The individual fins are comprised of thermally conductive material affixed to and in thermal communication with the base. The individual fins are arcuately shaped sections separated by arcuately shaped channels. The fins, together with the channels and base form a fin field having an inlet region, a middle region and an outlet region. Additionally, the fins may comprise a plurality of orifices, slots and/or apertures to enhance cross channel fluid communication, and/or textured surface regions in the form of surface anomalies for disrupting formation of a boundary layer along said fins.
Abstract:
An interactive scanning device or system having one or more single or multi-dimensional scanners, an input device, an image processor, and a communication interface, for scanning an object or surface and interactively displaying and manipulating a threedimensional image of the object or surface from the geometrical dimensions of the object or topology of the surface captured during scanning. The communication interface enables the geometrical dimensions of the object, the topology of the surface, or the image of the object, to be transmitted over a wire or wireless communication medium to an end user station having an interactive scanning device or a computer station, or both, for initial or further display and manipulation. A further embodiment of the present invention incorporates a photosensitive or photographic recording device to capture an optical image of the object or surface to superimpose with the scanned image.