Abstract:
A power converter having a first switch and a first unidirectional current device that conducts current unidirectionally. The first switch and first unidirectional current device are interconnected such that when interconnected with a dc voltage supply, battery, and first phase winding of an electrical machine: (1) a first operational state exists in which a conductive state of the first switch causes the dc voltage supply to conduct current through the first switch and first phase winding, so as to store energy within the first phase winding and (2) a second operational state exists in which a non-conductive state of the first switch causes the first phase winding to discharge its stored energy by conducting current through the first unidirectional current device and battery, so as to store energy in the battery.
Abstract:
Drive circuits that provide power factor correction and input current waveform shaping for controlling the speed and torque in a switched reluctance machine (SRM). The machine's phase windings are split into two segments, one of which is used for active power factor correction, input ac current waveform shaping and partial torque generation and the other of which is used for torque generation.
Abstract:
Regulating the speed of a two-phase switched reluctance machine (TPSRM) rotor includes selecting either a motoring mode or braking mode of operation for the TPSRM, regulating the rotor speed, when the motoring mode is selected, using a control signal cooperatively produced by a speed control feedback loop and a current control feedback loop; and regulating the rotor speed, when the braking mode is selected, using a control signal produced by the current control feedback loop without the cooperation of the speed control feedback loop. The speed control feedback loop uses an established speed control signal and a signal indicative of the rotor's speed to dynamically adjust a first parameter governing the control signal. The current control feedback loop uses an established current control signal and a signal indicative of the current flowing through a stator winding of the TPSRM to dynamically adjust a second parameter governing the control signal.
Abstract:
An electrical device has a capacitive storage element and first and second switches. The capacitive storage element and first and second switches are interconnected such that when interconnected with a direct current (dc) voltage supply and first and second windings of an electrical machine: (1) a first operational state exists in which conductive states of the first and second switches cause the dc voltage supply to conduct current through the first winding and the first switch and conduct current through the first and second switches and the second winding, respectively, thereby storing energy within the first and second windings, and (2) a second operational state exists in which non-conductive states of the first and second switches cause each of the first and second windings to discharge stored energy by conducting current through the capacitive storage element, thereby storing energy in the capacitive storage element.
Abstract:
An electrical machine rotor includes a flux-conducting portion and a flux-inhibiting portion. The flux-conducting portion is conducive to conveying an electromagnetic flux and has a plurality of salient rotor poles and a portion of back material. The flux-inhibiting portion is less conducive to conveying an electromagnetic flux than the flux-conducting portion and is disposed entirely outside the boundaries of the rotor poles.
Abstract:
An electrical machine rotor or stator having a plurality of salient poles and a barrier that inhibits the flow of air along an axial path between the environment outside the rotor or stator and the space between adjacent pairs of the poles. The barrier serves to reduce acoustic noise.
Abstract:
A method for collecting operational parameters of a motor may include controlling the energization of a phase winding of the motor to establish an operating point, monitoring operational parameters of the motor that characterize a relationship between the energization control applied to the motor's phase winding and the motor's response to this control, and collecting information of the operational parameters for the operating point that characterizes the relationship between the applied energization control and the motor's response. The collected information characterizing the relationship between the applied energization control and the motor's response may be employed by a neural network to estimate the regions of operation of the motor. And a system for controlling the operation of motor may employ this information, the neural network, or both to regulate the energization of a motor's phase winding during a phase cycle.
Abstract:
An inverter for a permanent magnet brushless do machine, having a permanent magnet rotor and a set of stator windings, applies the full dc voltage provided to the inverter to each phase of the machine.
Abstract:
A method for controlling a multi-phase motor includes withholding energization of a first phase of the motor for a non-zero period when the first phase's dwell time begins. Energization of the first phase is activated upon the expiration of the non-zero period. Energization of the first phase is deactivated for the remainder of the dwell time at a deactivation time occurring before or at the expiration of the dwell time.
Abstract:
A TPSRM may include a stator, having a plurality of poles and a ferromagnetic or iron back material, and a rotor having a plurality of poles and a ferromagnetic or iron back material. A current flowing through coils wound around a first set of the plurality of stator poles induces a flux flow through the first set of stator poles and portions of the stator back material during a first excitation phase. A current flowing through coils wound around a second set of the plurality of stator poles induces a flux flow through the second set of stator poles and portions of the stator back material during a second excitation phase. The numbers of stator and rotor poles for this TPSRM are selected such that substantially no flux reversal occurs in any part of the stator back material as a result of transitioning between the first and second excitation phases.