Abstract:
A driving method of a pixel array is provided. The driving method is suitable for a pixel array comprising at least one pixel set in each pixel array, wherein at least one pixel set comprises a plurality of pixels. In the driving method, a voltage having substantially same phase is used to drive the pixel electrodes of the pixels in the same pixel set. In addition, voltages with phases substantially opposite to each other are used to drive the pixel electrodes of the pixels in two adjacent pixel sets. Furthermore, a single gate line is used to drive two adjacent pixels in two different pixel sets respectively. In addition, a single gate line is used to drive a first pixel in one of the pixel set and another pixel in an adjacent column of the first pixel, wherein a phase of the voltage of a pixel electrode of the first pixel and a phase of a voltage of a pixel electrode of the other pixel are substantially different.
Abstract:
A driving method of a display unit includes: executing a first display procedure, for displaying a first frame on a display unit of the display driving circuit, and executing a counting mechanism; determining, if a second display procedure for displaying a second frame on the display unit is confirmed to be executed, whether or not a counting value of the counting mechanism is larger than a predetermined value; sequentially executing a specific display procedure and the second display procedure if the counting value is larger than the predetermined value; and directly executing the second display procedure if the counting value is equal to or smaller than the predetermined value. A display driving circuit applicable to be used by the display unit is also provided.
Abstract:
An electrophoretic display includes an electrophoretic panel, a timing control circuit, a source driver, a gate driver, and a gate line enable circuit. The timing control circuit generates a timing control signal corresponding to a refresh area of a frame according to the refresh area. The gate driver generates output enable signals corresponding to the refresh area according to the timing control signal, and the gate line enable circuit transmits scan signals of first gate lines corresponding to the refresh area to second gate lines corresponding to the refresh area according to the enabled output enable signals. The source driver drives data lines corresponding to the refresh area according to the timing control signal to charge/discharge pixels corresponding to the refresh area.
Abstract:
A bistable display and a method of driving a panel thereof are provided. The bistable display includes a bistable display panel and a driving device. The bistable display panel at least has a first pixel and a second pixel, and these two pixels share a data line. The driving device is coupled to the bistable display panel, and used for providing different source driving waveforms to the first pixel and the second pixel respectively.
Abstract:
A liquid crystal display device, drive circuit, and repair method thereof are provided. The drive circuit includes a plurality of signal lines and a plurality of drivers connected with the signal lines. The drivers have an ordering sequence. Each of the drivers includes a first amplifier and a second amplifier. Each of the first amplifier and the second amplifier includes an input terminal and an output terminal. The output terminal of the first amplifier of each of the driver is coupled to the input terminal of the first amplifier of the next stage driver according to the ordering sequence. The output terminal of the second amplifier of each driver is coupled to the input terminal of the second amplifier of the next stage driver according to the ordering sequence.
Abstract:
A display panel with multi-touch function includes a display area and a non-display area. The display area includes a data line, a gate line, a first sensing line, a second sensing line, and a sensing unit. The sensing unit electrically connects the first and second sensing lines according to a touch signal or electrically isolates the first sensing line from the second sensing line. The non-display area includes a gate driver, a first switch and a second switch. The first switch provides a path for charging the second sensing line according to a scan signal, and the second switch provides a path for discharging the second sensing line according to a reset signal.
Abstract:
A display apparatus comprises a shift register array. The shift register array comprises a plurality of shift registers. At least one shift register comprises a first transistor, a second transistor, a third transistor, and a driving circuit. The gate and the first electrode of the first transistor receive an input signal. The gate of the second transistor is coupled to the second electrode of the first transistor. The second electrode of the second transistor generates an output signal. The first electrode of the second transistor receives a clock signal. The third transistor is used to pull down a voltage level at the gate of the second transistor. The driving circuit determines an on/off status of the third transistor in response to the input signal and the output signal.
Abstract:
An onion waveform generator and a spread spectrum clock generator (SSCG) using the same are provided. The onion waveform generator includes a value generation unit and an accumulating unit. The value generation unit outputs a counting value. The accumulating unit accumulates the counting value to output a waveform value. The accumulating unit switches from an increasing mode to a decreasing mode if the waveform value is a third boundary value, and the accumulating unit switches from the decreasing mode to the increasing mode if the waveform value is a fourth boundary value.
Abstract:
A clock generator is illustrated. The clock generator mentioned above includes a multimodulus frequency divider and a delta-sigma modulator. The multimodulus frequency divider is archived by switching the phase thereof. The multimodulus frequency divider increases the operating frequency of the clock generator effectively, and has a characteristic with half period resolution for reducing the jitter of an output clock signal when its spectrum is spread. Besides, the delta-sigma modulator increases the accuracy of the triangle modulation and reduces error of quantization by adding a few components therein. Thus, the clock generator could be expanded to a programmable clock generator.
Abstract:
A touch substrate including a substrate, a plurality of first sensing series, a plurality of second sensing series, a plurality of signal pads, a plurality of signal transmission lines, and a plurality of conductive patterns is provided. The substrate has an active region and a peripheral region located outside the active region. The first and the second sensing series are disposed on the substrate and located in the active region. The signal pads are disposed on the substrate and located at the peripheral region. The signal transmission lines are disposed on the substrate and located in the peripheral region, and connect the first sensing series and the second sensing series to the corresponding signal pads. Each signal transmission line includes a winding portion disposed adjacent to one corresponding signal pad. Each conductive pattern is disposed on one signal pad and extends above the winding portion of one signal transmission line.