Abstract:
A touch substrate including a substrate, a plurality of first sensing series, a plurality of second sensing series, a plurality of signal pads, a plurality of signal transmission lines, and a plurality of conductive patterns is provided. The substrate has an active region and a peripheral region located outside the active region. The first and the second sensing series are disposed on the substrate and located in the active region. The signal pads are disposed on the substrate and located at the peripheral region. The signal transmission lines are disposed on the substrate and located in the peripheral region, and connect the first sensing series and the second sensing series to the corresponding signal pads. Each signal transmission line includes a winding portion disposed adjacent to one corresponding signal pad. Each conductive pattern is disposed on one signal pad and extends above the winding portion of one signal transmission line.
Abstract:
A touch panel includes two substrates, a sealant positioned between the substrates, a liquid crystal layer disposed between the substrates and enclosed by the sealant, and a first and a second sensing zones disposed on the substrate, wherein the first sensing zone is enclosed by the second sensing zone, and the second sensing zone is enclosed by the sealant. The first and second sensing zones have at least a first sensor and at least a second sensor respectively. The first sensor has a first sensor gap, and the second sensor has a second sensor gap smaller than the first sensor gap.
Abstract:
A touch panel including a substrate, a plurality of first sensing series, and a plurality of second sensing series is provided. The first sensing series and the second sensing series are disposed on the substrate. The first sensing series extend along a first direction and are electrically insulated from each other. Each of the first sensing series includes a plurality of first sensing pads and a plurality of first bridge portions connected between the first sensing pads. The second sensing series extend along a second direction and are electrically insulated from each other. Each of the second sensing series includes a plurality of second sensing pads and a plurality of second bridge portions connected between the second sensing pads. Each of the first bridge portions and one of the second bridge portions are intersected, and at least one of the second bridge portions has at least one electrostatic discharge tip.
Abstract:
A repairable touch control device includes a substrate, a sensor circuit, and at least a repairing wiring. The substrate includes a sensor region, and a peripheral region. The sensor circuit, which includes sensor wirings, is disposed in the sensor region. The repairing wiring is disposed in the peripheral region for repairing the sensor wirings.
Abstract:
The present invention provides a touch panel used in a display device. The touch panel of the present invention is configured to display images and to receive as well as to process instructions inputted by user's touches. A display substrate partially overlaps with an image driving circuit substrate of the touch panel. A touch sensing circuit is disposed on the inner side of the display substrate. A touch sensing processor is disposed on the inner side of a touch sensing circuit and is also electrically coupled to the touch sensing circuit. Consequently, the thickness of the touch panel as well as the overall thickness of the display device is reduced.
Abstract:
A display apparatus comprises a shift register array. The shift register array comprises a plurality of shift registers. At least one shift register comprises a first transistor, a second transistor, a third transistor, and a driving circuit. The gate and the first electrode of the first transistor receive an input signal. The gate of the second transistor is coupled to the second electrode of the first transistor. The second electrode of the second transistor generates an output signal. The first electrode of the second transistor receives a clock signal. The third transistor is used to pull down a voltage level at the gate of the second transistor. The driving circuit determines an on/off status of the third transistor in response to the input signal and the output signal.
Abstract:
A liquid crystal display includes a pixel electrode coupled in each of a plurality of pixels, wherein the pixel electrode has a first side along which runs a first data line and a second side along which runs a second data line, and a switch element coupling the pixel electrode with one scan line and the first data line. A conductive layer is connected to any of the first or second data line to form a compensation capacitor coupling between the pixel electrode and the first or second data line. The compensation capacitor balances the capacitive coupling at the two sides of the pixel electrode adjacent to the first and second side of the pixel electrode.
Abstract:
A CMOS dynamic logic structure has a plurality of logic gates, and the logic gates includes type-1 and type-3 logic gates alternately connected with each other. Each logic gate is separated into a function unit and a driver unit. The function unit has a PMOS precharge transistor, and a logic tree block stacked with the PMOS precharge transistor. The driver unit has an NMOS evaluation transistor, and the NMOS evaluation transistor and the PMOS precharge transistor of the previous-stage logic gate is controlled by an identical clock in order not to be turned on simultaneously.
Abstract:
A capacitive touch panel and a display device using the capacitive touch panel are provided. The capacitive touch panel includes a first electrode layer, a second electrode layer, and a dielectric layer disposed between two layers. The first electrode layer has a plurality of first A electrode strings and first B electrode strings extended along a first direction. The first A electrode string and the first B electrode string respectively has a plurality of first direction electrodes. The second electrode layer has a plurality of second direction electrodes connected in series along a second direction. The first A and B electrode strings are disconnected in the first electrode layer while they are simultaneously detected for presence of signal variation.
Abstract:
An electrophoretic display includes an electrophoretic panel, a timing control circuit, a source driver, a gate driver, and a gate line enable circuit. The timing control circuit generates a timing control signal corresponding to a refresh area of a frame according to the refresh area. The gate driver generates output enable signals corresponding to the refresh area according to the timing control signal, and the gate line enable circuit transmits scan signals of first gate lines corresponding to the refresh area to second gate lines corresponding to the refresh area according to the enabled output enable signals. The source driver drives data lines corresponding to the refresh area according to the timing control signal to charge/discharge pixels corresponding to the refresh area.