Abstract:
A touch substrate including a substrate, a plurality of first sensing series, a plurality of second sensing series, a plurality of signal pads, a plurality of signal transmission lines, and a plurality of conductive patterns is provided. The substrate has an active region and a peripheral region located outside the active region. The first and the second sensing series are disposed on the substrate and located in the active region. The signal pads are disposed on the substrate and located at the peripheral region. The signal transmission lines are disposed on the substrate and located in the peripheral region, and connect the first sensing series and the second sensing series to the corresponding signal pads. Each signal transmission line includes a winding portion disposed adjacent to one corresponding signal pad. Each conductive pattern is disposed on one signal pad and extends above the winding portion of one signal transmission line.
Abstract:
A touch panel includes two substrates, a sealant positioned between the substrates, a liquid crystal layer disposed between the substrates and enclosed by the sealant, and a first and a second sensing zones disposed on the substrate, wherein the first sensing zone is enclosed by the second sensing zone, and the second sensing zone is enclosed by the sealant. The first and second sensing zones have at least a first sensor and at least a second sensor respectively. The first sensor has a first sensor gap, and the second sensor has a second sensor gap smaller than the first sensor gap.
Abstract:
A touch panel including a substrate, a plurality of first sensing series, and a plurality of second sensing series is provided. The first sensing series and the second sensing series are disposed on the substrate. The first sensing series extend along a first direction and are electrically insulated from each other. Each of the first sensing series includes a plurality of first sensing pads and a plurality of first bridge portions connected between the first sensing pads. The second sensing series extend along a second direction and are electrically insulated from each other. Each of the second sensing series includes a plurality of second sensing pads and a plurality of second bridge portions connected between the second sensing pads. Each of the first bridge portions and one of the second bridge portions are intersected, and at least one of the second bridge portions has at least one electrostatic discharge tip.
Abstract:
A repairable touch control device includes a substrate, a sensor circuit, and at least a repairing wiring. The substrate includes a sensor region, and a peripheral region. The sensor circuit, which includes sensor wirings, is disposed in the sensor region. The repairing wiring is disposed in the peripheral region for repairing the sensor wirings.
Abstract:
The present invention provides a touch panel used in a display device. The touch panel of the present invention is configured to display images and to receive as well as to process instructions inputted by user's touches. A display substrate partially overlaps with an image driving circuit substrate of the touch panel. A touch sensing circuit is disposed on the inner side of the display substrate. A touch sensing processor is disposed on the inner side of a touch sensing circuit and is also electrically coupled to the touch sensing circuit. Consequently, the thickness of the touch panel as well as the overall thickness of the display device is reduced.
Abstract:
A liquid crystal display includes a pixel electrode coupled in each of a plurality of pixels, wherein the pixel electrode has a first side along which runs a first data line and a second side along which runs a second data line, and a switch element coupling the pixel electrode with one scan line and the first data line. A conductive layer is connected to any of the first or second data line to form a compensation capacitor coupling between the pixel electrode and the first or second data line. The compensation capacitor balances the capacitive coupling at the two sides of the pixel electrode adjacent to the first and second side of the pixel electrode.
Abstract:
A CMOS dynamic logic structure has a plurality of logic gates, and the logic gates includes type-1 and type-3 logic gates alternately connected with each other. Each logic gate is separated into a function unit and a driver unit. The function unit has a PMOS precharge transistor, and a logic tree block stacked with the PMOS precharge transistor. The driver unit has an NMOS evaluation transistor, and the NMOS evaluation transistor and the PMOS precharge transistor of the previous-stage logic gate is controlled by an identical clock in order not to be turned on simultaneously.
Abstract:
A resistance type touch display panel includes a first substrate and a second substrate disposed above the first substrate. The first substrate includes many scan lines and data lines defining many pixel regions on the first substrate, many pixel units and touch units. Each pixel unit is located in one of the pixel regions and electrically connected with one of the scan lines and data lines respectively. Each touch unit is electrically connected with one of the scan lines and data lines and distributed in at least two pixel regions. The second substrate includes many spacers, many touch protrusions and a common electrode covering the spacers and the touch protrusions. Each touch protrusion is located above one of the touch units and a gap is formed between the common electrode disposed on each touch protrusion and the touch unit.
Abstract:
An onion waveform generator and a spread spectrum clock generator (SSCG) using the same are provided. The onion waveform generator includes a value generation unit and an accumulating unit. The value generation unit outputs a counting value. The accumulating unit accumulates the counting value to output a waveform value. The accumulating unit switches from an increasing mode to a decreasing mode if the waveform value is a third boundary value, and the accumulating unit switches from the decreasing mode to the increasing mode if the waveform value is a fourth boundary value.
Abstract:
A touch panel includes a substrate, a touch-sensing circuit, a plurality of sensing signal transmission wires, a capacitance compensation conductor, and a sensing signal readout circuit. The touch-sensing circuit is disposed on the substrate. The sensing signal transmission wires are disposed on the substrate and electrically connected to the touch-sensing circuit. The capacitance compensation conductor is disposed over the sensing signal transmission wires. Capacitance of each sensing signal transmission wire is C1, and coupling capacitance between each sensing signal transmission wire and the capacitance compensation conductor is C2. The sensing signal readout circuit is electrically connected to the sensing signal transmission wires. In each sensing signal transmission wire, variation of summation of C1 and C2 is less than a readout resolution of the sensing signal readout circuit. Another touch panel using an electrostatic discharge conductor to adjust varied capacitances of sensing signal transmission wires is also provided.