Abstract:
Techniques are provided for managing multiple Web services on a single device. The device includes device metadata and a service manager. Each Web service registers with the service manager. Registration includes providing service metadata to the service manager. The service manager may generate (e.g., at least some) service relationship data based on the service metadata. The service relationship data indicates (either explicitly or implicitly) a relationship (e.g., a dependency) between a first Web service of the multiple Web services and a second Web service. In response to one or more criteria being satisfied with respect to the first Web service, the service manager uses the service relationship data and/or the device metadata to determine that one or more actions should be initiated with respective to the second Web service.
Abstract:
Approaches for the optimized printing of electronic documents are provided. The approaches are applicable to a wide variety of contexts and implementations and include generating an estimated processing time for an electronic document and reporting the estimated processing time back to a client device. Generating an estimated time to process includes processing at least a portion of the print data. Further, the approaches include re-ordering a processing queue based on the estimated processing time for the electronic document, and additionally based on an in-queue time for each print data in the processing queue. Further, any user-designated priority may be factored into the re-ordering of print data in the processing queue, or in the alternative, bypass the optimization process entirely. These approaches may be implemented on a printing device, a print server, a client device or any other device capable of utilizing these approaches.
Abstract:
Approaches for the optimized printing of electronic documents are provided. The approaches are applicable to a wide variety of contexts and implementations and include generating an estimated processing time for an electronic document and reporting the estimated processing time back to a client device. Generating an estimated time to process includes processing at least a portion of the print data. Further, the approaches include re-ordering a processing queue based on the estimated processing time for the electronic document, and additionally based on an in-queue time for each print data in the processing queue. Further, any user-designated priority may be factored into the re-ordering of print data in the processing queue, or in the alternative, bypass the optimization process entirely. These approaches may be implemented on a printing device, a print server, a client device or any other device capable of utilizing these approaches.
Abstract:
Techniques are provided for reducing the amount of event notifications within a Web Service Application (WSA) of a device such as a multi-functional peripheral (MFP). In one technique, a Subscription ID is linked with a Job ID within a reduced notification table. When an event occurs related to a specific job, an event notification is sent only to the subscriber associated with that job.
Abstract:
Techniques for extending a Web services system are provided. One or more Web service applications (WSA) execute on a device. Each WSA provides at least one service. A WSA implements a particular version of a Web Services (WS) specification that is previous to a current version of the WS specification. In one technique, an orchestration module is added that coordinates the interaction between the WSA and one or more extension modules. While processing the request, the WSA calls the orchestration module. The orchestration module, based on one or more attributes of a request, determines whether an extension module, that comprises logic, should be called to process a portion of the request. The logic corresponds to a difference between the previous version and the current version. After an extension module finishes processing the portion of the request, the WSA is caused to further process the request.
Abstract:
Techniques are provided for efficiently processing SOAP requests at a Web service application (WSA) of a multi-functional device (MFP). In one technique, a WSA includes at least three threads. An external request processing thread processes SOAP requests from different client applications. A request processing thread processes a SOAP request according to the business logic of the WSA. A internal communications thread communicates with other components of the MFP that are distinct from the WSA. In another technique, a WSA processes different SOAP request differently, depending on the size of the SOAP and the resources required to process the SOAP request so that fast requests may be processed immediately while slow requests are pending. In another technique, a WS-Eventing specification is implemented within a WSA to simplify the event subscription and notification process.
Abstract:
Techniques are provided for efficiently processing SOAP requests at a Web service application (WSA) of a multi-functional device (MFP). In one technique, a WSA includes at least three threads. An external request processing thread processes SOAP requests from different client applications. A request processing thread processes a SOAP request according to the business logic of the WSA. A internal communications thread communicates with other components of the MFP that are distinct from the WSA. In another technique, a WSA processes different SOAP request differently, depending on the size of the SOAP and the resources required to process the SOAP request so that fast requests may be processed immediately while slow requests are pending. In another technique, a WS-Eventing specification is implemented within a WSA to simplify the event subscription and notification process.
Abstract:
Approaches for the optimized printing of electronic documents are provided. The approaches are applicable to a wide variety of contexts and implementations and include generating an estimated processing time for an electronic document and reporting the estimated processing time back to a client device. Generating an estimated time to process includes processing at least a portion of the print data. Further, the approaches include re-ordering a processing queue based on the estimated processing time for the electronic document, and additionally based on an in-queue time for each print data in the processing queue. Further, any user-designated priority may be factored into the re-ordering of print data in the processing queue, or in the alternative, bypass the optimization process entirely. These approaches may be implemented on a printing device, a print server, a client device or any other device capable of utilizing these approaches.
Abstract:
Techniques are provided for efficiently processing SOAP requests at a Web service application (WSA) of a multi-functional device (MFP). In one technique, a WSA includes at least three threads. An external request processing thread processes SOAP requests from different client applications. A request processing thread processes a SOAP request according to the business logic of the WSA. A internal communications thread communicates with other components of the MFP that are distinct from the WSA. In another technique, a WSA processes different SOAP request differently, depending on the size of the SOAP and the resources required to process the SOAP request so that fast requests may be processed immediately while slow requests are pending. In another technique, a WS-Eventing specification is implemented within a WSA to simplify the event subscription and notification process.
Abstract:
Techniques are provided for implementing the WS-DeviceProfile standard as a multi-threaded process (“DFM”) executing on a multi-function peripheral (“MFP”). The DFM takes care of the discovery of devices and services on a network. The DFM also acts as a facility manager. The DFM implements various web services in a single component that applications can re-use. The DFM insulates these applications from some of the more complex details of the web services that the DFM implements. The MFP may comprise several different applications, each with a different specialized function. Each of these applications uses the web services provided by the DFM. The multi-threaded nature of the DFM permits new services to be added to the MFP dynamically. The threads can handle separate tasks concurrently. For example, one thread can handle communications with processes outside the MFP, while another thread can simultaneously handle communications with processes and applications inside the MFP.